Text Analytics Toolbox™
User's Guide

MATLAB

R2022b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Text Analytics Toolbox™ User's Guide
© COPYRIGHT 2017-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2018 Online Only New for Version 1.1 (Release 2018a)
September 2018 Online Only Revised for Version 1.2 (Release 2018b)
March 2019 Online Only Revised for Version 1.3 (Release 2019a)
September 2019 Online Only Revised for Version 1.4 (Release 2019b)
March 2020 Online Only Revised for Version 1.5 (Release 2020a)
September 2020 Online Only Revised for Version 1.6 (Release 2020b)
March 2021 Online Only Revised for Version 1.7 (Release 2021a)
September 2021 Online Only Revised for Version 1.8 (Release 2021b)
March 2022 Online Only Revised for Version 1.8.1 (Release 2022a)

September 2022 Online Only Revised for Version 1.9 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Text Data Preparation

1]

Extract Text Datafrom Files 1-2
Prepare Text Data for Analysis 1-11
Parse HTML and Extract Text Content 1-18
Correct Spelling in Documents 1-22
Create Extension Dictionary for Spelling Correction 1-24

Create Custom Spelling Correction Function Using Edit Distance

Searchers e 1-28
Analyze Sentence Structure Using Grammatical Dependency Parsing .. 1-34
Data Sets for Text Analytics 1-39

Modeling and Prediction

2|

Create Simple Text Model for Classification 2-2
Analyze Text Data Using Multiword Phrases 2-7
Analyze Text Data Using Topic Models 2-13
Choose Number of Topics for LDAModel 2-19
Compare LDA Solvers i, 2-23
Visualize LDA Topics Using Word Clouds 2-28
Visualize LDA Topic Probabilities of Documents 2-30
Visualize Document Clusters Using LDA Model 2-35
Visualize LDA Topic Correlations 2-38

Visualize Correlations Between LDA Topics and Document Labels 2-42

iii

iv

Contents

Create Co-occurrence Network 2-48

Analyze Text Data Containing Emojis 2-52
Analyze SentimentinText 2-58
Generate Domain Specific Sentiment Lexicon 2-61
Train a Sentiment Classifier 2-71
Extract Keywords from Text Data Using RAKE 2-79
Extract Keywords from Text Data Using TextRank 2-82
Classify Documents Using Document Embeddings 2-85
Classify Text Data Using Deep Learning 2-90
Classify Text Data Using Convolutional Neural Network 2-98
Classify Text Data Using Custom TrainingLoop 2-105
Multilabel Text Classification Using Deep Learning 2-116
Sequence-to-Sequence Translation Using Attention 2-135
Language Translation Using Deep Learning 2-149
Classify Out-of-Memory Text Data Using Deep Learning 2-171
Pride and Prejudice and MATLABu... 2-177
Word-By-Word Text Generation Using Deep Learning 2-183
Generate Text Using Autoencoders 2-190
Define Text Encoder Model Function 2-202
Define Text Decoder Model Function 2-209

Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore
.. 2-216

Display and Presentation

3|

Visualize Text Data UsingWord Clouds 3-2

Visualize Word Embeddings Using Text Scatter Plots 3-8

Language Support

4

S|

Language Considerations, 4-2
Language-Independent Features 4-4
Japanese Language Support e 4-6
Tokenization 4-6

Part of Speech Details 4-6
Named Entity Recognition 4-7

Stop Wordso 4-8
Lemmatizationc . 4-8
Language-Independent Features 4-9
Analyze Japanese Text Data 4-10
German Language Support 4-20
Tokenization 4-20
Sentence Detection 4-20

Part of Speech Details 4-21
Named Entity Recognition 4-22

Stop Words e 4-23
Stemming e 4-23
Language-Independent Features 4-24
Analyze German TextData 4-25
Korean Language Support 4-36
Tokenization i 4-36

Part of Speech Details 4-36
Named Entity Recognition 4-36
StopWords e 4-36
Lemmatization 4-36
Language-Independent Features 4-36
Language-Independent Features 4-38
Word and N-Gram Counting 4-38
Modeling and Prediction i 4-38
Glossary

Text Analytics Glossary 5-2
Documents and TOKENSottt e 5-2
Preprocessingt e 5-3
Modeling and Prediction 5-3
Visualization 5-5

Text Data Preparation

+ “Extract Text Data from Files” on page 1-2

» “Prepare Text Data for Analysis” on page 1-11

* “Parse HTML and Extract Text Content” on page 1-18

* “Correct Spelling in Documents” on page 1-22

* “Create Extension Dictionary for Spelling Correction” on page 1-24

* “Create Custom Spelling Correction Function Using Edit Distance Searchers” on page 1-28
* “Analyze Sentence Structure Using Grammatical Dependency Parsing” on page 1-34

* “Data Sets for Text Analytics” on page 1-39

1 fextData Preparation

Extract Text Data from Files

This example shows how to extract the text data from text, HTML, Microsoft® Word, PDE CSV, and
Microsoft Excel® files and import it into MATLAB® for analysis.

Usually, the easiest way to import text data into MATLAB is to use the extractFileText function.
This function extracts the text data from text, PDE, HTML, and Microsoft Word files. To import text
from CSV and Microsoft Excel files, use readtable. To extract text from HTML code, use
extractHTMLText. To read data from PDF forms, use readPDFFormData.

Text File

Extract the text from sonnets.txt using extractFileText. The file sonnets. txt contains
Shakespeare's sonnets in plain text.

filename = "sonnets.txt";
str = extractFileText(filename);

View the first sonnet by extracting the text between the two titles "I" and "II".

start = " I" + newline;
fin = " II";
sonnetl = extractBetween(str,start,fin)

sonnetl =
From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

For text files containing multiple documents seperated by newline characters, use the readlines
function.

filename = "multilineSonnets.txt";
str = readlines(filename)

str = 3x1 string
"From fairest creatures we desire increase, That thereby beauty's rose might never die, But
"When forty winters shall besiege thy brow, And dig deep trenches in thy beauty's field, Thy
"Look in thy glass and tell the face thou viewest Now is the time that face should form anotl

1-2

Extract Text Data from Files

Microsoft Word Document

Extract the text from sonnets.docx using extractFileText. The file exampleSonnets.docx
contains Shakespeare's sonnets in a Microsoft Word document.

filename = "exampleSonnets.docx";
str = extractFileText(filename);

View the second sonnet by extracting the text between the two titles "II" and "ITI".
start = " II" + newline;

fin = " III";
sonnet2 = extractBetween(str,start,fin)

sonnet2 =

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,"
Proving his beauty by succession thine!

This were to be new made when thou art old,

And see thy blood warm when thou feel'st it cold.

The example Microsoft Word document uses two newline characters between each line. To replace
these characters with a single newline character, use the replace function.

sonnet2 = replace(sonnet2, [newline newline],newline)

sonnet?2

1-3

1 fextData Preparation

1-4

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

PDF Files
Extract text from PDF documents and data from PDF forms.
PDF Document

Extract the text from sonnets.pdf using extractFileText. The file exampleSonnets. pdf
contains Shakespeare's sonnets in a PDF.

filename = "exampleSonnets.pdf";
str = extractFileText(filename);

View the third sonnet by extracting the text between the two titles "III" and "IV". This PDF has a
space before each newline character.

start = " III " + newline;
fin = "IV";
sonnet3 = extractBetween(str,start,fin)

sonnet3 =

Look in thy glass and tell the face thou viewest
Now is the time that face should form another;
Whose fresh repair if now thou not renewest,
Thou dost beguile the world, unbless some mother.
For where is she so fair whose unear'd womb
Disdains the tillage of thy husbandry?
Or who is he so fond will be the tomb,
0f his self-love to stop posterity?
Thou art thy mother's glass and she in thee
Calls back the lovely April of her prime;
So thou through windows of thine age shalt see,
Despite of wrinkles this thy golden time.

But if thou live, remember'd not to be,

Die single and thine image dies with thee.

Extract Text Data from Files

PDF Form

To read text data from PDF forms, use readPDFFormData. The function returns a struct containing
the data from the PDF form fields.

filename = "weatherReportForml.pdf";
data = readPDFFormData(filename)

data = struct with fields:
event type: "Thunderstorm Wind"
event narrative: "Large tree down between Plantersville and Nettleton."

HTML
Extract text from HTML files, HTML code, and the web.
HTML File

To extract text data from a saved HTML file, use extractFileText.

filename = "exampleSonnets.html";
str = extractFileText(filename);

View the forth sonnet by extracting the text between the two titles "IV" and "V".

start = newline + "IV" + newline;
fin = newline + "V" + newline;
sonnet4 = extractBetween(str,start,fin)

sonnet4 =
Unthrifty loveliness, why dost thou spend
Upon thy self thy beauty's legacy?
Nature's bequest gives nothing, but doth lend,
And being frank she lends to those are free:
Then, beauteous niggard, why dost thou abuse
The bounteous largess given thee to give?
Profitless usurer, why dost thou use
So great a sum of sums, yet canst not live?
For having traffic with thy self alone,
Thou of thy self thy sweet self dost deceive:
Then how when nature calls thee to be gone,
What acceptable audit canst thou leave?
Thy unused beauty must be tombed with thee,
Which, used, lives th' executor to be.

HTML Code

To extract text data from a string containing HTML code, use extractHTMLText.

code = "<html><body><h1>THE SONNETS</hl><p>by William Shakespeare</p></body></html>";
str = extractHTMLText (code)

str =
"THE SONNETS

1-5

1 extData Preparation

by William Shakespeare"

From the Web

To extract text data from a web page, first read the HTML code using webread, and then use

extractHTMLText.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

str = extractHTMLText (code)

str =

'Text Analytics Toolbox

Analyze and model text data

Release Notes

PDF Documentation

Release Notes

PDF Documentation

Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing, analyzing
Text Analytics Toolbox includes tools for processing raw text from sources such as equipmen
Using machine learning techniques such as LSA, LDA, and word embeddings, you can find clust
Get Started

Learn the basics of Text Analytics Toolbox

Text Data Preparation

Import text data into MATLAB® and preprocess it for analysis

Modeling and Prediction

Develop predictive models using topic models and word embeddings

Display and Presentation

Visualize text data and models using word clouds and text scatter plots

Language Support

Information on language support in Text Analytics Toolbox'

Parse HTML Code

To find particular elements of HTML code, parse the code using htmlTree and use findElement.
Parse the HTML code and find all the hyperlinks. The hyperlinks are nodes with element name "A".

1-6

Extract Text Data from Files

tree = htmlTree(code);
selector = "A";
subtrees = findElement(tree,selector);

View the first 10 subtrees and extract the text using ext ractHTMLText.
subtrees(1:10)

ans =
10x1 htmlTree:

Skip to content

<IMG src="/1iI
Products

Solutions

Academia

Support

Community

Events

Get MATLAB
<IMG src="/imag

str = extractHTMLText(subtrees);

View the extracted text of the first 10 hyperlinks.
str(1:10)

ans = 10x1 string
"Skip to content"
"Products”
"Solutions"
"Academia"
"Support"
"Community"
"Events"”
"Get MATLAB"

To get the link targets, use getAttributes and specify the attribute "href" (hyperlink reference).
Get the link targets of the first 10 subtrees.

attr = "href";
str getAttribute(subtrees(1:10),attr)

str = 10x1 string
"#content container™
"https://www.mathworks.com?s tid=gn logo"
"https://www.mathworks.com/products.html?s tid=gn ps"
"https://www.mathworks.com/solutions.html?s tid=gn sol"
"https://www.mathworks.com/academia.html?s tid=gn acad"
"https://www.mathworks.com/support.html?s tid=gn supp"
"https://www.mathworks.com/matlabcentral/?s tid=gn mlc"
"https://www.mathworks.com/company/events.html?s tid=gn ev"
"https://www.mathworks.com/products/get-matlab.html?s tid=gn getml"

1-7

1 textData Preparation

1-8

"https://www.mathworks.com?s tid=gn_logo"

CSV and Microsoft Excel Files

To extract text data from CSV and Microsoft Excel files, use readtable and extract the text data
from the table that it returns.

Extract the table data from factoryReposts. csv using the readtable function and view the first
few rows of the table.

T = readtable('factoryReports.csv', 'TextType', 'string');

head(T)

ans=8x5 table

Description Category

"Items are occasionally getting stuck in the scanner spools." "Mechanical Failure
"Loud rattling and banging sounds are coming from assembler pistons." "Mechanical Failure
"There are cuts to the power when starting the plant." "Electronic Failure
"Fried capacitors in the assembler." "Electronic Failure
"Mixer tripped the fuses." "Electronic Failure
"Burst pipe in the constructing agent is spraying coolant." "Leak"
"A fuse is blown in the mixer." "Electronic Failure
"Things continue to tumble off of the belt." "Mechanical Failure

Extract the text data from the event narrative column and view the first few strings.

str = T.Description;
str(1:10)
ans = 10x1 string

"Items are occasionally getting stuck in the scanner spools."

"Loud rattling and banging sounds are coming from assembler pistons."
"There are cuts to the power when starting the plant."”

"Fried capacitors in the assembler."

"Mixer tripped the fuses."

"Burst pipe in the constructing agent is spraying coolant."

"A fuse is blown in the mixer."

"Things continue to tumble off of the belt."

"Falling items from the conveyor belt."

"The scanner reel is split, it will soon begin to curve."

Extract Text from Multiple Files

If your text data is contained in multiple files in a folder, then you can import the text data into
MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The example files are named
"exampleSonnetN. txt", where N is the number of the sonnet. Specify the file name using the
wildcard "*" to find all file names of this structure. To specify the read function to be
extractFileText, input this function to fileDatastore using a function handle.

location = fullfile(matlabroot, "examples", "textanalytics", "data", "exampleSonnet*.txt");

fds

= fileDatastore(location, 'ReadFcn',@extractFileText)

Extract Text Data from Files

fds =

FileDatastore with properties:
Files: {

" ...\matlab\examples\textanalytics\data\exampleSonnetl.txt"';

" ...\matlab\examples\textanalytics\data\exampleSonnet2.txt"';

" ...\matlab\examples\textanalytics\data\exampleSonnet3.txt"'

... and 2 more
}
Folders: {
" ...\matlab\examples\textanalytics\data'

}
UniformRead: 0

ReadMode: 'file’
BlockSize: Inf
PreviewFcn: @extractFileText
SupportedOutputFormats: ["txt" "csv" "xlsx"
ReadFcn: @extractFileText
AlternateFileSystemRoots: {}

x1s" "parquet" "parq" png

Loop over the files in the datastore and read each text file.

str = [];

while hasdata(fds)
textData = read(fds);
str = [str; textData];

end

View the extracted text.
str

str = 5x1 string
" From fairest creatures we desire increase,« That thereby beauty's rose might never die,«
" When forty winters shall besiege thy brow,« And dig deep trenches in thy beauty's field,.
" Look in thy glass and tell the face thou viewest« Now is the time that face should form
" Unthrifty loveliness, why dost thou spende Upon thy self thy beauty's legacy?« Nature's
"from fairest creatures we desire increase that thereby beautys rose might never die but as -

See Also
extractFileText | readPDFFormData | extractHTMLText | tokenizedDocument

Related Examples

. “Prepare Text Data for Analysis” on page 1-11

. “Create Simple Text Model for Classification” on page 2-2
. “Visualize Text Data Using Word Clouds” on page 3-2

. “Analyze Text Data Containing Emojis” on page 2-52

. “Analyze Text Data Using Topic Models” on page 2-13

. “Analyze Text Data Using Multiword Phrases” on page 2-7
. “Classify Text Data Using Deep Learning” on page 2-90

1-9

1 TextData Preparation

. “Train a Sentiment Classifier” on page 2-71

1-10

Prepare Text Data for Analysis

Prepare Text Data for Analysis

This example shows how to create a function which cleans and preprocesses text data for analysis.

Text data can be large and can contain lots of noise which negatively affects statistical analysis. For
example, text data can contain the following:

* Variations in case, for example "new" and "New"

* Variations in word forms, for example "walk" and "walking"

* Words which add noise, for example stop words such as "the" and "of"

* Punctuation and special characters

« HTML and XML tags

These word clouds illustrate word frequency analysis applied to some raw text data from factory
reports, and a preprocessed version of the same text data.

Raw Data Cleaned Data
' Somelemes
. controller
. _;;;I ru:-'_',l ng) Snilj g?qlg : t__ v —;. ol
e sound inside power
ce assembler = PPEAT fuse piow
e item
SCaNNEr stuck = ime A9ENL cmck .
o 1m|xersijlnd5 ; xlrtw SOu nd -::nff
- from the . i hear .0et software

e tD 1 o Mlxer off start m | Xer”‘”ﬂ
SwEin= scannefs

i The OF Zoolnt o assembler
=i] ag eﬂt bdander B aud SpDDl rm
and fime Things ' ruduct
appaaring heard swok: stuck robot pD'u'EFhEEt
avarhaaling i by “= gorter material
h Pzt it beer " blEﬂdEI’ Band
Coninolie i construct

OO e

Load and Extract Text Data

Load the example data. The file factoryReports. csv contains factory reports, including a text
description and categorical labels for each event.

filename = "factoryReports.csv";
data = readtable(filename, 'TextType', 'string');

1-11

1 fextData Preparation

1-12

Extract the text data from the field Description, and the label data from the field Category.

textData = data.Description;
labels = data.Category;
textData(1:10)

ans = 10x1 string
"Items are occasionally getting stuck in the scanner spools."
"Loud rattling and banging sounds are coming from assembler pistons."
"There are cuts to the power when starting the plant."”
"Fried capacitors in the assembler."
"Mixer tripped the fuses."
"Burst pipe in the constructing agent is spraying coolant."
"A fuse is blown in the mixer."
"Things continue to tumble off of the belt."
"Falling items from the conveyor belt."
"The scanner reel is split, it will soon begin to curve."

Create Tokenized Documents

Create an array of tokenized documents.

cleanedDocuments = tokenizedDocument (textData);
cleanedDocuments(1:10)

ans =
10x1 tokenizedDocument:

10 tokens: Items are occasionally getting stuck in the scanner spools .

11 tokens: Loud rattling and banging sounds are coming from assembler pistons .
11 tokens: There are cuts to the power when starting the plant

6 tokens: Fried capacitors in the assembler .

5 tokens: Mixer tripped the fuses

10 tokens: Burst pipe in the constructing agent is spraying coolant

8 tokens: A fuse is blown in the mixer .

9 tokens: Things continue to tumble off of the belt

7 tokens: Falling items from the conveyor belt

13 tokens: The scanner reel is split , it will soon begin to curve .

To improve lemmatization, add part of speech details to the documents using
addPart0fSpeechDetails. Use the addPart0fSpeech function before removing stop words and
lemmatizing.

cleanedDocuments = addPartOfSpeechDetails(cleanedDocuments);

Words like "a", "and", "to", and "the" (known as stop words) can add noise to data. Remove a list of
stop words using the removeStopWords function. Use the removeStopWords function before using
the normalizeWords function.

cleanedDocuments = removeStopWords(cleanedDocuments);
cleanedDocuments(1:10)

ans =
10x1 tokenizedDocument:

7 tokens: Items occasionally getting stuck scanner spools
8 tokens: Loud rattling banging sounds coming assembler pistons .

Prepare Text Data for Analysis

tokens: cuts power starting plant

tokens: Fried capacitors assembler .

tokens: Mixer tripped fuses

tokens: Burst pipe constructing agent spraying coolant
tokens: fuse blown mixer .

tokens: Things continue tumble off belt

tokens: Falling items conveyor belt

tokens: scanner reel split , soon begin curve .

U RANDDU

Lemmatize the words using normalizeWords.

cleanedDocuments = normalizeWords(cleanedDocuments, 'Style', 'lemma’);
cleanedDocuments(1:10)

ans =
10x1 tokenizedDocument:

tokens: items occasionally get stuck scanner spool
tokens: loud rattle bang sound come assembler piston
tokens: cut power start plant

tokens: fry capacitor assembler .

tokens: mixer trip fuse .

tokens: burst pipe constructing agent spray coolant
tokens: fuse blow mixer .

tokens: thing continue tumble off belt

tokens: fall item conveyor belt

tokens: scanner reel split , soon begin curve .

U AN RUIOON

Erase the punctuation from the documents.

cleanedDocuments = erasePunctuation(cleanedDocuments);
cleanedDocuments(1:10)

ans =
10x1 tokenizedDocument:

tokens: items occasionally get stuck scanner spool
tokens: loud rattle bang sound come assembler piston
tokens: cut power start plant

tokens: fry capacitor assembler

tokens: mixer trip fuse

tokens: burst pipe constructing agent spray coolant
tokens: fuse blow mixer

tokens: thing continue tumble off belt

tokens: fall item conveyor belt

tokens: scanner reel split soon begin curve

O UWOWWRAYNO

Remove words with 2 or fewer characters, and words with 15 or greater characters.

cleanedDocuments = removeShortWords (cleanedDocuments,?2);
cleanedDocuments = removelLongWords (cleanedDocuments,15);
cleanedDocuments(1:10)

ans =
10x1 tokenizedDocument:

1-13

1 fextData Preparation

tokens: items occasionally get stuck scanner spool
tokens: loud rattle bang sound come assembler piston
tokens: cut power start plant

tokens: fry capacitor assembler

tokens: mixer trip fuse

tokens: burst pipe constructing agent spray coolant
tokens: fuse blow mixer

tokens: thing continue tumble off belt

tokens: fall item conveyor belt

tokens: scanner reel split soon begin curve

O UWOWWRAYNO

Create Bag-of-Words Model

Create a bag-of-words model.

cleanedBag bagO0fWords (cleanedDocuments)

cleanedBag =
bagOfWords with properties:

Counts: [480x352 double]
Vocabulary: [1x352 string]
NumWords: 352
NumDocuments: 480

Remove words that do not appear more than two times in the bag-of-words model.

cleanedBag removeInfrequentWords(cleanedBag,?2)

cleanedBag =
bagOfWords with properties:

Counts: [480x163 double]
Vocabulary: [1x163 string]
NumWords: 163
NumDocuments: 480

Some preprocessing steps such as removeInfrequentWords leaves empty documents in the bag-of-
words model. To ensure that no empty documents remain in the bag-of-words model after
preprocessing, use removeEmptyDocuments as the last step.

Remove empty documents from the bag-of-words model and the corresponding labels from labels.

[cleanedBag,idx] = removeEmptyDocuments(cleanedBag);
labels(idx) = [1;
cleanedBag

cleanedBag =
bagOfWords with properties:

Counts: [480x163 double]
Vocabulary: [1x163 string]
NumWords: 163
NumDocuments: 480

1-14

Prepare Text Data for Analysis

Create a Preprocessing Function

It can be useful to create a function which performs preprocessing so you can prepare different
collections of text data in the same way. For example, you can use a function so that you can
preprocess new data using the same steps as the training data.

Create a function which tokenizes and preprocesses the text data so it can be used for analysis. The
function preprocessText, performs the following steps:

Tokenize the text using tokenizedDocument.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove words with 2 or fewer characters using removeShortWords.

o A W N M

Remove words with 15 or more characters using removeLongWords.

Use the example preprocessing function preprocessText to prepare the text data.

newText = "The sorting machine is making lots of loud noises.";
newDocuments = preprocessText(newText)

newDocuments =
tokenizedDocument:

6 tokens: sorting machine make lot loud noise

Compare with Raw Data

Compare the preprocessed data with the raw data.

rawDocuments = tokenizedDocument(textData);
rawBag = bag0fWords(rawDocuments)

rawBag =
bagOfWords with properties:

Counts: [480x555 double]
Vocabulary: [1x555 string]
NumWords: 555
NumDocuments: 480

Calculate the reduction in data.

numWordsCleaned = cleanedBag.NumWords;
numWordsRaw = rawBag.NumWords;
reduction = 1 - numWordsCleaned/numWordsRaw

reduction = 0.7063

Compare the raw data and the cleaned data by visualizing the two bag-of-words models using word
clouds.

figure
subplot(1,2,1)

1-15

1 TextData Preparation

wordcloud(rawBag) ;
title("Raw Data")
subplot(1,2,2)
wordcloud(cleanedBag) ;
title("Cleaned Data")

Raw Data Cleaned Data
o o Somelemes
eyl wra - cONfroller
e comnn | COOlANT s
. constructing — smnke conveyor
e Sound iNside e ..ne POWET
ce assembler PPEAT fuse plow .
SCanNer stuck = i agent “cack
“::'_j_;"”’ MIXer sounds v SOU nd i;ﬂ: e

Fofcl aee WIS e belt set fmare -
e ﬁ‘Dm aoftware amil hear .o¢! so o
-'{-:l'.l.-::::! oy tD ..-:t.hr,ﬁer off v .Jiltts_ln I I I Ixe r1r:=-=1ll.;?'le
i IS “” scanner-
gorer arm On et .
=+ gssembler

et The OF Zoolant

spocis agent blendes :

" s Spool 8rm. mog

sgly and tme Things - product
appaaring heard seok . :,,[uuk robot overheat
avarhaaling ' sorter: material
Mz i e " blEﬂdEI’ Band T
coninolisr i construct
il OO e

Preprocessing Function

The function preprocessText, performs the following steps in order:

Tokenize the text using tokenizedDocument.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove words with 2 or fewer characters using removeShortWords.

o A W N R

Remove words with 15 or more characters using removeLongWords.
function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument (textData);

% Remove a list of stop words then lemmatize the words. To improve

% lemmatization, first use addPartOfSpeechDetails.
documents = addPartOfSpeechDetails(documents);

1-16

Prepare Text Data for Analysis

documents
documents

removeStopWords (documents);
normalizeWords (documents, 'Style', 'lemma');

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove words with 2 or fewer characters, and words with 15 or more
% characters.

documents = removeShortWords (documents,?2);

documents = removelLongWords(documents,15);

end

See Also

tokenizedDocument | bag0fWords | removeStopWords | removeLongWords |
removeShortWords | erasePunctuation | removeEmptyDocuments | removeInfrequentWords
| normalizeWords | wordcloud | addPartOfSpeechDetails

Related Examples

. “Extract Text Data from Files” on page 1-2

. “Create Simple Text Model for Classification” on page 2-2
. “Visualize Text Data Using Word Clouds” on page 3-2

. “Analyze Text Data Containing Emojis” on page 2-52

. “Analyze Text Data Using Topic Models” on page 2-13

. “Analyze Text Data Using Multiword Phrases” on page 2-7
. “Classify Text Data Using Deep Learning” on page 2-90

. “Train a Sentiment Classifier” on page 2-71

1-17

1 fextData Preparation

Parse HTML and Extract Text Content

This example shows how to parse HTML code and extract the text content from particular elements.

Parse HTML Code

Read HTML code from the URL https://www.mathworks.com/help/textanalytics using
webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.
tree = htmlTree(code);

View the HTML element name of the tree.
tree.Name

ans =
"HTML"

View the child elements of the tree. The children are subtrees of tree.
tree.Children

ans =
4x1 htmlTree:

<HEAD><TITLE>Text Analytics Toolbox Documentation</TITLE><META charset="utf-8"/><META conten

<BODY id="responsive offcanvas"><!-- Mobile TopNav: Start --><DIV class="header visible-xs v.

Extract Text from HTML Tree

To extract text directly from the HTML tree, use extractHTMLText.

str extractHTMLText (tree)

str =
"Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing, analyzing

Text Analytics Toolbox includes tools for processing raw text from sources such as equipmen

Using machine learning techniques such as LSA, LDA, and word embeddings, you can find cluste

Find HTML Elements

To find particular elements of an HTML tree, use findElement. Find all the hyperlinks in the HTML
tree. In HTML, hyperlinks use the "A" tag.

selector
subtrees

IIAII ;
findElement (tree, selector);

1-18

Parse HTML and Extract Text Content

View the first few subtrees.

subtre

ans =
20x1

<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<IMG alt="Ma
class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathworks.com/|

/ /www

//wWww .
//www .
//www .
//wWww .
//wWww .
//www .

//wWww .
//wWww .
//wWww .

mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
.mathworks.
mathworks.
mathworks.
mathworks.

com/products.html?s tid=gn ps">Products
com/solutions.html?s tid=gn sol">Solutions
com/academia.html?s tid=gn acad">Academia
com/support.html?s tid=gn supp">Support
com/matlabcentral/?s tid=gn mlc">Community
com/company/events.html?s tid=gn_ev">Events
com/company/aboutus/contact us.html?s tid=gn_cntus">Contact U
com/store?s cid=store top nav&s tid=gn_store">How to Buys<,
com/company/aboutus/contact us.html?s tid=gn_cntus">Contact U
com/store?s cid=store top nav&s tid=gn_store">How to Buys<,

class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathworks.com/|
class="svg link pull-left" href="https://www.mathworks.com?s tid=gn logo"><IMG alt="MathW

es(1:20)

htmlTree:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https
href="https
href="https
href="https
href="https
href="https

v/ /www .

2/ /www

v/ /www .
v/ /www .
v/ /www .
v/ /www .

mathworks.
.mathworks.
mathworks.
mathworks.
mathworks.
mathworks.

com/products.html?s tid=gn ps">Products
com/solutions.html?s tid=gn sol">Solutions
com/academia.html?s tid=gn acad">Academia
com/support.html?s tid=gn supp">Support
com/matlabcentral/?s tid=gn mlc">Community
com/company/events.html?s tid=gn ev">Events

Create a word cloud from the text of the hyperlinks.

str =
figure
wordcl

extractHTMLText (subtrees);

oud(str);

title("Hyperlinks")

1-19

1 fextData Preparation

1-20

Hyperlinks

. MathWorks

Tooboxm Functlons

e Engllerb
SolutionsBuy resentation
~outensSY ProdUCtContact. Setes

Updates Tl'lal Exa m pl eS NOtESPrHEEE)rmm

Cons uhing

DO‘Cufr’ientatlon

Dicistgchilar

Release ﬁﬁﬂ(‘ﬁﬂg Te)go.smay

Predicti
rediction PDF Started’ " Jnited MATLAB

Analytms Sof’[Wa € Answers

Reparts Exchange

----- . Licensin
DownloadSGettlng Modeling ’
Installation Community

Get HTML Attributes

Get the class attributes from the paragraph elements in the HTML tree.

subtrees = findElement(tree, 'p');
attr = "class";
str = getAttribute(subtrees,attr)

str = 21x1 string array

<missing>
<missing>

"add _margin 5"
<missing>
<missing>
<missing>
<missing>
<missing>
"category desc"
"category desc"
"category desc"
"category desc"
<missing>
<missing>
<missing>
“text-center"
<missing>
<missing>
<missing>

Parse HTML and Extract Text Content

"copyright"
<missing>
Create a word cloud from the text contained in paragraph elements with class "category desc".

subtrees = findElement(tree, 'p.category desc');
str = extractHTMLText(subtrees);

figure
wordcloud(str);
o DISQIoCEss
em ﬁlgg @ Mo e e
analy d t - acalier
-"-'1‘5 a MATLAR
word
Dievabon Veauahze
Toolbox Analybcs | |
See Also

htmlTree | findElement | getAttribute | extractHTMLText | tokenizedDocument

Related Examples

. “Prepare Text Data for Analysis” on page 1-11

. “Create Simple Text Model for Classification” on page 2-2
. “Visualize Text Data Using Word Clouds” on page 3-2

. “Analyze Text Data Using Topic Models” on page 2-13

. “Analyze Text Data Using Multiword Phrases” on page 2-7
. “Classify Text Data Using Deep Learning” on page 2-90

. “Train a Sentiment Classifier” on page 2-71

1-21

1 fextData Preparation

Correct Spelling in Documents

This example shows how to correct spelling in documents using Hunspell.
Load Text Data

Create an array of tokenized documents.

str = [

"Use MATLAB to correct spelling of words."

"Correctly spelled worrds are important for lemmatization."

"Text Analytics Toolbox providesfunctions for spelling correction."];
documents = tokenizedDocument(str)

documents =
3x1 tokenizedDocument:

8 tokens: Use MATLAB to correct spelling of words

8 tokens: Correctly spelled worrds are important for lemmatization .
8 tokens: Text Analytics Toolbox providesfunctions for spelling correction

Correct Spelling

Correct the spelling of the documents using the correctSpelling function.

updatedDocuments correctSpelling(documents)

updatedDocuments =
3x1 tokenizedDocument:

9 tokens: Use MAT LAB to correct spelling of words
8 tokens: Correctly spelled words are important for solemnization .
9 tokens: Text Analytic Toolbox provides functions for spelling correction

Notice that:

* The input word "MATLAB" has been split into the two words "MAT" and "LAB".

* The input word "worrds" has been changed to "words".

* The input word "lemmatization" has been changed to "solemnization".

* The input word "Analytics" has been changed to "Analytic".

* The input word "providesfunctions" has been split into the two words "provides" and "functions".

Specify Custom Words

To prevent the software from updating particular words, you can provide a list of known words using
the 'KnownWords' option of the correctSpelling function.

Correct the spelling of the documents again and specify the words "MATLAB", "Analytics", and
"lemmatization" as known words.

updatedDocuments = correctSpelling(documents, 'KnownWords', ["MATLAB" "Analytics" "lemmatization"]

updatedDocuments =
3x1 tokenizedDocument:

1-22

Correct Spelling in Documents

8 tokens: Use MATLAB to correct spelling of words .
8 tokens: Correctly spelled words are important for lemmatization .
9 tokens: Text Analytics Toolbox provides functions for spelling correction .

Notice here that the words "MATLAB", "Analytics", and "lemmatization" remain unchanged.

See Also
correctSpelling | tokenizedDocument

More About
. “Create Extension Dictionary for Spelling Correction” on page 1-24
. “Create Custom Spelling Correction Function Using Edit Distance Searchers” on page 1-28

. “Prepare Text Data for Analysis” on page 1-11
. “Create Simple Text Model for Classification” on page 2-2
. “Analyze Text Data Using Topic Models” on page 2-13

1-23

1 fextData Preparation

Create Extension Dictionary for Spelling Correction

This example shows how to create a Hunspell extension dictionary for spelling correction.

When using the correctSpelling function, the function may update some correctly spelled words.
To provide a list of known words, you can use the “KnownWords” option directly with a string array of
known words. Alternatively, you can specify a Hunspell extension dictionary (also known as a
personal dictionary) that specifies lists of known words, forbidden words, and words alongside affix
rules.

Specify Known Words

Create an array of tokenized documents.

str = [

"Use MATLAB to correct spelling of words."

"Correctly spelled worrds are important for lemmatizing."

"Text Analytics Toolbox providesfunctions for spelling correction."];
documents = tokenizedDocument(str);

Correct the spelling of the documents using the correctSpelling function.
updatedDocuments = correctSpelling(documents)

updatedDocuments =
3x1 tokenizedDocument:

9 tokens: Use MAT LAB to correct spelling of words .
8 tokens: Correctly spelled words are important for legitimatizing .
9 tokens: Text Analytic Toolbox provides functions for spelling correction .

The function has corrected the spelling of the words "worrds" and "providesfunctions”, though it has
also updated some correctly spelled words:

* The input word "MATLAB" has been split into the two words "MAT" and "LAB".
* The input word "lemmatizing" has been changed to "legitimatizing".
* The input word "Analytics" has been changed to "Analytic".

To create a Hunspell extension dictionary containing a list of known words, create a .dic file
containing these words with one word per line. Create an extension dictionary with name
knownWords .dic file containing the words "MATLAB", "lemmatization", and "Analytics".

MATLAB
Analytics
lemmatizing

Correct the spelling of the documents again and specify the extension dictionary knownWords.dic.
updatedDocuments = correctSpelling(documents, 'ExtensionDictionary', 'knownWords.dic")

updatedDocuments =
3x1 tokenizedDocument:

8 tokens: Use MATLAB to correct spelling of words .

1-24

Create Extension Dictionary for Spelling Correction

8 tokens: Correctly spelled words are important for lemmatizing .
9 tokens: Text Analytics Toolbox provides functions for spelling correction .

Specify Affix Rules

When specifying multiple words with the same root word (for example, specifying the words
"lemmatize", "lemmatizer", "lemmatized", and so on), it can be easier to indicate a set of affix rules.
Instead of specifying the same word multiple times with different affixes, you can specify particular
word to inherit a set of affix rules from.

For example, create an array of tokenized documents and use the correctSpelling function.

str = [
"A lemmatizer reduces words to their dictionary forms."
"To lemmatize words, use the normalizeWords function."
"Before lemmatizing, add part of speech details to the text."
"Display lemmatized words in a word cloud."];

documents = tokenizedDocument(str);

updatedDocuments = correctSpelling(documents)

updatedDocuments =
4x1 tokenizedDocument:

9 tokens: A legitimatize reduces words to their dictionary forms .

10 tokens: To legitimatize words , use the normalize Words function

12 tokens: Before legitimatizing , add part of speech details to the text
8 tokens: Display legitimatized words in a word cloud .

Notice that the word "normalizeWords" and variants of "lemmatize" do not get updated correctly.

Create an extension dictionary with name knownWordsWithAffixes.dic file containing the words
"normalizeWords" and "lemmatize". For the word "lemmatize", also specify to also include valid
affixes of the word "equalize" using the "/" symbol.

normalizeWords
lemmatize/equalize

Correct the spelling of the documents again and specify the extension dictionary
knownWordsWithAffixes.dic.

updatedDocuments = correctSpelling(documents, 'ExtensionDictionary', 'knownWordsWithAffixes.dic")

updatedDocuments =
4x1 tokenizedDocument:

9 tokens: A lemmatizer reduces words to their dictionary forms .

9 tokens: To lemmatize words , use the normalizeWords function .

12 tokens: Before lemmatizing , add part of speech details to the text .
8 tokens: Display lemmatized words in a word cloud .

Notice that the variants of "lemmatize" have not been changed. The default dictionary contains the
word "equalize" and also recognizes the words "equalizer" and "equalized" via the "-r" and "-d"
suffixes, respectively. By specifying the entry "lemmatize/equalize", the software recognizes the word
"lemmatize" as well as other words by extension of the affixes corresponding to "equalize". For
example, the words "lemmatizer" and "lemmatized".

1-25

1 fextData Preparation

Specify Forbidden Words

When using the correctSpelling function, the function may output undesirable words, even if a
more desirable word is in the dictionary. For example, for the input word "Decrese", the
correctSpelling function may output the word "Decrees". To ensure that certain words to not
appear in the output, you can specify forbidden words in the extension dictionary.

For example, create an array of tokenized documents and correct the spelling using the extension
dictionary knownWords.dic. Note that this dictionary contains the word "MATLAB".

str = [
"Analyze text data using MATLAB."
"Decrese the number of typos using an extension dictionary."];
documents = tokenizedDocument(str);
updatedDocuments = correctSpelling(documents, 'ExtensionDictionary', 'knownWords.dic"')

updatedDocuments =
2x1 tokenizedDocument:

6 tokens: Analyze text data using MATLAB .
10 tokens: Decrees the number of typos using an extension dictionary .

Even though the word "decrease" is in the dictionary, the function may still choose other words as
matches. In this case, the function chooses the word "decrees".

Create an extension dictionary with name knownWordsWithForbiddenWords.dic file containing
the word "MATLAB" and also specify the forbidden word "decree" using the "*" symbol. When
specifying forbidden words, you must specify the root word. For example, to prevent the function
from outputing the the plural "decrees", specify the root word "decree".

MATLAB
*decree

Correct the spelling of the documents using the extension dictionary
knownWordsWithForbiddenWords.dic.

updatedDocuments = correctSpelling(documents, 'ExtensionDictionary', 'knownWordsWithForbiddenWords

updatedDocuments =
2x1 tokenizedDocument:

6 tokens: Analyze text data using MATLAB .
10 tokens: Decrease the number of typos using an extension dictionary .

Here, the word "Decrese" is corrected to "Decrease".

See Also
correctSpelling | tokenizedDocument

More About
. “Correct Spelling in Documents” on page 1-22
. “Create Custom Spelling Correction Function Using Edit Distance Searchers” on page 1-28

1-26

Create Extension Dictionary for Spelling Correction

“Prepare Text Data for Analysis” on page 1-11
“Create Simple Text Model for Classification” on page 2-2
“Analyze Text Data Using Topic Models” on page 2-13

1-27

1 TextData Preparation

Create Custom Spelling Correction Function Using Edit
Distance Searchers

1-28

This example shows how to correct spelling using edit distance searchers and a vocabulary of known
words.

Lemmatization with normalizeWords and word2vec requires correctly spelled words to work. To
easily correct the spelling of words in text, use the correctSpelling function. To learn how to
create a spelling correction function from scratch using edit distance searchers, use this example as a
guide.

If you have misspelled words in a collection of text, then you can use edit distance searchers to find
the nearest correctly spelled words to a given vocabulary. To correct the spelling of misspelled words
in documents, replace them with the nearest neighbors in the vocabulary. Use edit distance searchers
to find the nearest correctly spelled word to misspelled words according to an edit distance. For
example, the number of adjacent grapheme swaps and grapheme insertions, deletions, and
substitutions.

Load Data

Create a vocabulary of known words. Download and extract the Spell Checking Oriented Word Lists
(SCOWL) from https://sourceforge.net/projects/wordlist/ into a folder in the currrent directory. Import
the words from the downloaded data using the supporting function scowlWordList.

folderName = "scowl-2019.10.06";

maxSize = 60;
vocabulary = scowlWordList(folderName, 'english',maxSize);

View the number of words in the vocabulary.
numWords = numel(vocabulary)
numWords = 98213

Create Simple Spelling Corrector

Using the imported vocabulary, create an edit distance searcher with a maximum distance of 2. For
better results, allow for adjacent grapheme swaps by setting the 'SwapCost' option to 1. For large
vocabularies, this can take a few minutes.

maxDist = 2;
eds = editDistanceSearcher(vocabulary,maxDist, 'SwapCost',1);

This edit distance searcher is case sensitive which means that changing the case of characters
contributes to the edit distance. For example, the searcher can find the neighbor "testing" for the
word "tseting" because it has edit distance 1 (one swap), but not of the word "TSeTiNG" because it
has edit distance 6.

Correct Spelling

Correct the spelling of misspelled words in an array of tokenized documents by selecting the
misspelled words and finding the nearest neighbors in the edit distance searcher.

Create a tokenized document object containing typos and spelling mistakes.

https://sourceforge.net/projects/wordlist/

Create Custom Spelling Correction Function Using Edit Distance Searchers

str = "An exmaple dccoument with typos and averyunusualword.";
document = tokenizedDocument(str)

document =
tokenizedDocument:

8 tokens: An exmaple dccoument with typos and averyunusualword .

Convert the documents to a string array of words using the string function.
words = string(document)

words = 1x8 string
"An" "exmaple" "dccoument™ "with" "typos" "and" "averyunusualword"

Find the words that need correction. To ignore words that are correctly spelled, find the indices of the
words already in the vocabulary. To ignore punctuation and complex tokens such as email addresses,
find the indices of the words which do not have the token types "letters" or "other". Get the token
details from the document using the tokenDetails function.

tdetails = tokenDetails(document);
idxVocabularyWords = ismember(tdetails.Token,eds.Vocabulary);

idxComplexTokens = ...
tdetails.Type ~= "letters" & ...
tdetails.Type ~= "other";
idxWordsToCheck = ...
~idxVocabularyWords & ...
~idxComplexTokens

idxWordsToCheck = 8x1 logical array

[N S NoNoNo NI i

Find the numeric indices of the words and view the corresponding words.
idxWordsToCheck = find(idxWordsToCheck)

idxWordsToCheck 4x1

~NWN =

wordsToCheck = words(idxWordsToCheck)

1-29

1 TextData Preparation

wordsToCheck = 1x4 string
"An" "exmaple" "dccoument” "averyunusualword"

Notice that the word "An" is flagged as a word to check. This word is flagged because the vocabulary
does not contain the word "An" with an uppercase "A". A later section in the example shows how to
create a case insensitive spelling corrector.

Find the nearest words and their distances using the knnsearch function with the edit distance
searcher.

[idxNearestWords,d] = knnsearch(eds,wordsToCheck)

idxNearestWords = 4x1

165
1353
1152
NaN
d = 4x1
1
1
2
Inf

If any of the words are not found in the searcher, then the function returns index NaN with distance
Inf. The word "averyunusualword" does not have a match within edit distance 2, so the function
returns the index NaN for that word.

Find the indices of the words with positive finite edit distances.

idxMatches = ~isnan(idxNearestWords)
idxMatches = 4x1 logical array

1

1

1

0

Get the indices of the words with matches in the searcher and view the corresponding corrected
words in the vocabulary.

idxCorrectedWords = idxNearestWords (idxMatches)
idxCorrectedWords = 3x1
165

1353
1152

correctedWords = eds.Vocabulary(idxCorrectedWords)

1-30

Create Custom Spelling Correction Function Using Edit Distance Searchers

correctedWords = 1Ix3 string
"an" "example" "document"

Replace the misspelled words that have matches with the corrected words.

idxToCorrect = idxWordsToCheck(idxMatches);
words (idxToCorrect) = correctedWords

words = 1x8 string
"an "example" "document" "with" "typos" "and" "averyunusualword"

To create a tokenized document of these words, use the tokenizedDocument function and set
'TokenizedMethod' to 'none’.

document = tokenizedDocument(words, 'TokenizeMethod', 'none')

document =
tokenizedDocument:

8 tokens: an example document with typos and averyunusualword .

The next section shows how to correct the spelling of multiple documents at once by creating a
custom spelling correction function and using docfun.

Create Spelling Correction Function

To correct the spelling in multiple documents at once, create a custom function using the code from
the previous section and use this function with the docfun function.

Create a function that takes an edit distance searcher, a string array of words, and the corresponding
table of token details as inputs and outputs the corrected words. The correctSpelling function,
listed at the end of the example, corrects the spelling in a string array of words using the
corresponding token details and an edit distance searcher.

To use this function with the docfun function, create a function handle that takes a string array of
words and the corresponding table of token details as the inputs.

func = @(words,tdetails) correctSpelling(eds,words,tdetails);

Correct the spelling of an array of tokenized documents using docfun with the function handle func.

str = [
"Here is some reallyu badly wrirten texct."
"Some moree mitsakes here too."];
documents = tokenizedDocument(str);
updatedDocuments = docfun(func,documents)

updatedDocuments =
2x1 tokenizedDocument:

8 tokens: here is some really badly written text .
6 tokens: come more mistakes here too .

Note that uppercase characters can get corrected to different lowercase characters. For example, the
word "Some" can get corrected to "come". If multiple words in the edit distance searcher vocabulary

1-31

1 TextData Preparation

1-32

have the same edit distance to the input, then the function outputs the first result it found. For
example, the words "come" and "some" both have edit distance 1 from the word "Some".

The next section shows how to create an spelling corrector that is case insensitive.
Create Case Insensitive Spelling Corrector

To prevent differences in case clashing with other substitutions, create an edit distance searcher with
the vocabulary in lower case and convert the documents to lowercase before using the edit distance
searcher.

Convert the vocabulary to lowercase. This operation can introduce duplicate words, remove them by
taking the unique values only.

vocabularylLower
vocabularylLower

lower(vocabulary);
unique(vocabularylLower);

Create an edit distance searcher using the lowercase vocabulary using the same options as before.
This can take a few minutes to run.

maxDist = 2;
eds = editDistanceSearcher(vocabularylLower,maxDist, 'SwapCost',1);

Use the edit distance searcher to correct the spelling of the words in tokenized document. To use the
case insensitive spelling corrector, convert the documents to lowercase.

documentsLower = lower(documents);

Correct the spelling using the new edit distance searcher using same steps as before.

func = @(words,tdetails) correctSpelling(eds,words,tdetails);
updatedDocuments = docfun(func,documentsLower)

updatedDocuments =
2x1 tokenizedDocument:

8 tokens: here is some really badly written text .
6 tokens: some more mistakes here too .

Here, the word "Some" in the original text is converted to "some" before being input to the spelling
corrector. The corresponding word "some" is unaffected by the searcher as the word some occurs in
the vocabulary.

Spelling Correction Function

The correctSpelling function corrects the spelling in a string array of words using the
corresponding token details and an edit distance searcher. You can use this function with docfun to
correct the spelling of multiple documents at once.

function words = correctSpelling(eds,words,tdetails)

% Get indices of misspelled words ignoring complex tokens.
idxVocabularyWords = ismember(tdetails.Token,eds.Vocabulary);

idxComplexTokens = ...
tdetails.Type ~= "letters" & ...
tdetails.Type ~= "other";

Create Custom Spelling Correction Function Using Edit Distance Searchers

idxWordsToCheck = ...
~idxVocabularyWords & ...
~idxComplexTokens;

% Convert to numeric indices.
idxWordsToCheck = find(idxWordsToCheck);

% Find nearest words.
wordsToCheck = words(idxWordsToCheck) ;
idxNearestWords = knnsearch(eds,wordsToCheck);

% Find words with matches.
idxMatches = ~isnan(idxNearestWords);

% Get corrected words.
idxCorrectedWords = idxNearestWords(idxMatches);
correctedWords = eds.Vocabulary(idxCorrectedWords);

% Correct words.
idxToCorrect = idxWordsToCheck(idxMatches);
words (idxToCorrect) = correctedWords;

end

See Also

correctSpelling | editDistanceSearcher | editDistance | tokenizedDocument |
tokenDetails | knnsearch | docfun

More About
. “Correct Spelling in Documents” on page 1-22
. “Create Extension Dictionary for Spelling Correction” on page 1-24

. “Prepare Text Data for Analysis” on page 1-11
. “Create Simple Text Model for Classification” on page 2-2

1-33

1 fextData Preparation

Analyze Sentence Structure Using Grammatical Dependency
Parsing

1-34

This example shows how to extract information from a sentence using grammatical dependency
parsing.

Grammatical dependency parsing is the process of identifying the grammatic structure of a sentence
by highlighting the dependencies between the words of the sentence. For example, you can indicate
which adjectives modify which nouns.

You can use grammatical dependency analysis to extract information from a sentence. For example,
for the sentence "If you see a blue light, then press the red button." you can parse the grammatical
details of the sentence and programmatically attain that the button is red and should be pressed.

This plot shows the grammatical structure of a sentence.

poUApE
yaund

Jaung

POLLELTIL
1ag
punadiiad

¥ LB | Sy
If the temperature reaches 100 degrees , then disable the heating element .

Add Grammatical Dependency Details
Create a string scalar containing the sentence to analyze.
str = "If the temperature reaches 100 degrees, then disable the heating element.";

Tokenize the text and add grammatical dependency to the documents. The addDependencyDetails
function requires the Text Analytics Toolbox™ Model for UDify Data support package. If the support
package is not installed, then the function provides a download link.

Analyze Sentence Structure Using Grammatical Dependency Parsing

document
document

tokenizedDocument(str);
addDependencyDetails(document);

View the token details using the tokenDetails function. The addDependencyDetails function
adds the variables Head and Dependency to the table.

tdetails = tokenDetails(document)

tdetails=13x8 table

Token DocumentNumber SentenceNumber LineNumber Type Language
"If" 1 1 1 letters en
"the" 1 1 1 letters en
“temperature" 1 1 1 letters en
"reaches" 1 1 1 letters en
"100" 1 1 1 digits en
"degrees" 1 1 1 letters en
o 1 1 1 punctuation en
"then" 1 1 1 letters en
"disable" 1 1 1 letters en
"the" 1 1 1 letters en
"heating" 1 1 1 letters en
"element" 1 1 1 letters en
o 1 1 1 punctuation en

Visualize Grammatical Dependencies

Visualize the grammatical dependencies in a sentence chart.

figure
sentenceChart(document)

1-35

1 fextData Preparation

aund

OO

¥ ! Y ;
If the temperature reaches 100 degrees , then disable the heating element .

Extract Information from Grammatical Dependency Tree
You can use the tree structure to extract information from the sentence.
The form of the sentence is "If <condition>, then <action>.".

Find the root of the sentence. In this case, the root is the verb "disable" in the action.

idxRoot = find(tdetails.Dependency == "root");
tokenRoot = tdetails.Token(idxRoot)

tokenRoot =

"disable"

To parse the condition of the sentence, find the adverbial clause of the sentence. In this case, the root
of the adverbial clause is the verb "reaches".

idxRoot = find(tdetails.Dependency == "root");

idxAdvcl = (tdetails.Head == idxRoot) & (tdetails.Dependency == "advcl");
tokenAdvcl = tdetails.Token(idxAdvcl)

tokenAdvcl =

"reaches"

To parse the subclause of the form "<subject> reaches <object>", find the subject and object of the
word "reaches".

1-36

Analyze Sentence Structure Using Grammatical Dependency Parsing

Find the nominal subject of the word "reaches". In this case, the nominal subject is the word
"temperature".

idxToken = find(tdetails.Token == "reaches");

idxNsubj = (tdetails.Head == idxToken) & (tdetails.Dependency == "nsubj");
tokenNsubj = tdetails.Token(idxNsubj)

tokenNsubj =
“temperature"

Find the object of the verb "reaches". In this case, the object is the word "degrees".

idxToken = find(tdetails.Token == "reaches");

idxConditionObject = (tdetails.Head == idxToken) & (tdetails.Dependency == "obj");
tokenConditionObject = tdetails.Token(idxConditionObject)

tokenConditionObject =

"degrees"

To parse the subclause of the form "<number> degrees", find the numeric modifier of the word
"degrees". In this case, the numeric modifier is "100".

idxToken = find(tdetails.Token == "degrees");

idxNummod = (tdetails.Head == idxToken) & (tdetails.Dependency == "nummod");
tokenNummod = tdetails.Token(idxNummod)

tokenNummod =
n 100 n

To parse the action of the sentence, find the object of the verb "disable". In this case, the object is the
word "element".

idxToken = find(tdetails.Token == "disable");

idxActionObject = (tdetails.Head == idxToken) & (tdetails.Dependency == "obj");
tokenActionObject = tdetails.Token(idxActionObject)

tokenActionObject =

"element"

To parse the subclause of the form "<type> element", find the tokens with a compound relation. In
this case the modifier is the word "heating".

idxToken = find(tdetails.Token == "element");

idx0Object = (tdetails.Head == idxToken) & (tdetails.Dependency == "compound");
tokenCompound = tdetails.Token(idxObject)

tokenCompound =

"heating"

See Also

sentenceChart | wordcloud | textscatter | addDependencyDetails | tokenDetails |
addSentenceDetails | tokenizedDocument

1-37

1 textData Preparation

More About

. “Prepare Text Data for Analysis” on page 1-11
. “Create Simple Text Model for Classification” on page 2-2
. “Language Considerations” on page 4-2

1-38

Data Sets for Text Analytics

Data Sets for Text Analytics

This page provides a list of different data sets that you can use to get started with text analytics

applications.
Data Set Description Task
Factory Reports The Factory Reports data set is a table containing Text classification,
approximately 500 reports with various attributes topic modeling
including a plai in the variable
Description laﬁé:ﬁ tegcﬁ gl}}fabel in the variable
Category.
ReadsthéFacto Bﬂs data"fr:G e file”
' "faﬂhfr@f theltextt data and
=aNMHe labels the telm an% CatTng’r’y‘f' o
shaking h alr S, T Sp Ctlvel LJI‘lI‘IE:Lt
olant blender engite
_ m pirstrintd '|al
coming @T ' e ying
o time it te bt g P reet SITIO kel s
t Il t
trlpped a @ﬁ GIJMM COO ant ranspor
' lefish fi
s o TS "ﬁ]@léﬁ@f FisE nside .
p Lemmggf}a ﬂ 'mre leaking rattling -
= software e
showing t II hot Occasionally miler S 00|"S e
CD rD er S O u n d fails emitieq _..
conveyor sometimes blO n._.. §
= . interface
appeanng power line Loud Whee)
starting jammed products P
freezes .. continues Thlngs prggrammmg
sorting Supply

1-39

1 extData Preparation

Data Set Description Task
Shakespeare's The file sonnets. txt contains all of Shakespeare's Topic modeling, text
Sonnets sonnets in a single text file. generation

Read the Shakespeare's Sonnets data from the file

"sonnets.txt".
beauty’s

filename = "soppets. txt"' b
wauth teXtDaF‘a C_ ?ﬁ@ﬁ?ﬂ‘jﬂ-ﬁ ﬂug nam' e
nes "JFHE@&&%W ar @t whitasdlace characters
|oland are'sépara wl %%Taracters Remove
riand up::une 1@‘%‘-@‘{& splth Hnro nothing
ajone
e first I IelgoE t t1tles

awmay

b each sppngh eyes world
x ata, "

mlght
- t :@ES iti(te ﬁewgmwe\fal'ng] kl‘ICl'W

t D t 2: Qrata
warth hast made al ¥ Qt thlne]mind
to is'datarfor

namg

nwself Efe sho

others new “Gener te Tek'ﬁ'US Be'elnor
!hlr}t_f]i_ p 1 llnﬁ leave thus
ear live best

glVEbeautyll thDnghl false

= better
figainst old .lh.lnk « aven

every

=3

= -y

1-40

Data Sets for Text Analytics

Data Set Description Task
ArXiv Metadata The ArXiv API allows you to access the metadata of Text classification,
scientific e-prints submitted to https://arxiv.org topic modeling
including the abstract and subject areas. For more
Combinatdoemation, see IRigistiestivenny/help/api. Both
Car N ge ey
:ulmport a set of abstracts: gnd category labels from:math
.. |papers using the ar ¢ give |
Ui E.Dnj “p: up usi g)SLV\%P ..bla.llblr QIUE s
... polyrumbial "https: //expo r’?’ft' PPy . org/oalz?é‘égd}q_ dE mLEds" + o
funlttlr:Jn"&S'eJE =Math " fimation g, camectin sjit
o "&metadataPr@]u1 _Bl'i 3 show:| ..
pmbh}n.S Eiptigns = weboptigns (pﬂ'o:;meout ,160); ‘H*F]_!OdeE-x nad
wost 2 [€00ewz- webreadurly thl!mns aea
tormuta IV E finite - function *= . sty SE‘t classial

ranfexample sh@ﬂtngmg}w::w parse the»ret[fﬂai r|}(aFica

ode and impo cords, see “Mul g patcr
" %tglassnicatlon ﬁg&%mmmg anﬁﬁ IS radly

Aumber - +:|Elturr[r:]lsudr“’Ij i : =
t Mo e e
o TSI, .5 piocess . ﬂ.‘%ﬂﬁa‘?ﬂ
two PFrOVe s e method ™ e
b p per e t."u S-HITIPIZH, paper : table .l.(: :!I
= veltex parameler - random’j..
QFEIJE'T.(:'..'.'-_f-"" T random entry Paper
i "“* sonsidar A A .
R gression = glgorithm
Fepbubay asymplotic

1-41

https://arxiv.org
https://arxiv.org/help/api

1 extData Preparation

Data Set Description Task
Books from Project |You can download many books from Project Gutenberg. |Topic modeling, text
Gutenberg For example, download the text from Alice's Adventures |generation
in Wonderland by Lewis Carroll from https://
wwWingigerb averitiilessiH Wdnidel| g using the
webread function.
url = "httpsr"}"}’Wﬁw gutenberg.org/files/11/11-h/11-h.htm";
code = webr);
ﬁg%ﬁ gttt ptarch Duchess
JJm The' HT'MLE ebhtains the r text inside <p>
g e ements EJ&M‘Ctt ere Gnt text b
2tk pars od U@mtm pﬁ]‘&i fib T
Wh}f the ele,ments w ith'the ﬂ;lem(a]mte
ok eSﬂv looked |
mada e EDQWre code) ; . MDCk Oh th I ng Dormouse
ecto,
Hatter Hatrek- rifctenent r
) g urned
nothing JUSE t Extract t th blmzées usm ®deemed
fc ove the back
found Dac
round V?%Tﬁ tgo l lttj Q a a I n i come
. MDUSE extbData = exD |E|St 'DrII:E | h
s ﬁéﬁm‘f QW get o
he) ple sho oce 1s datafor
=g r}ﬁeep earmn ewa%émt-m};p““
Usi'ﬁ&’!ﬁé%p Learmng pag 2 183. i
L3 great pyt ! mal [heard talking
tlﬁat s

1-42

https://www.gutenberg.org/files/11/11-h/11-h.htm
https://www.gutenberg.org/files/11/11-h/11-h.htm

Data Sets for Text Analytics

Data Set

Description

Task

Mk g ne

week

Romantic

Hna s ve

T OMG

Weekend updates

Howe oty

" stuck

ever

by

weather

WORTH

LT,

Fdoadines

I

The file weekendUpdates.x1sx contains example
social media status updates containing the hashtags
"#weekend" and "#vacation".

Chiling

Extract the taxtdata:

weekendUp
and extract

from the-file- sdagain
ﬂlswm,mg the reddtable function

g@%ﬁaé @xd e dfisble TextData.

weekend{pdates . xlgre Elt

naij

Texb" on

k?i;g% rk

vacation

) ¥ going

e
; agaln

end KNOW

Mext I

best - o

gonna

Q tT 5 '&f‘ﬁiﬁl'
keeplng -
fo-process this da.eext

on’

Sentiment analysis

mod

L=}

cited

Parwacad oo st
beach
s iy |
Mouka
#yum

t

=

Observs

Roman Nu

itions

-

merals

The CSV file "romanNumerals.csv" contains the

Sequence-to-

decimal numbers 1-1000 in the first column and the

sequence translation

—

dﬁ. n le—sia+]a | 1
ITTSPUITURITIY NNUILL IS 11T TIIC STCUIIU QUIUIIILTL,

ad the déciml-Rd

5 "romarnNumeral

CU I 1IUIIICL

man*hunjeral¥pairs frdih the CSV

s.csv".,

Lg
fil

il hnNumerals.[csv");

tions}{filename, K .

1file("rom

ions[J det ctImEgrtOp
'TextType|, 'string’',

ename = fu

opt

I
["Source"
["string"

1DogdV o eidbl aNomac !
7

ions.VarialpleNames
ions.raria 1eques

"Marget"];
"Istring"];

opt
opt

datfla = readtalple(filenamp,options);

For an example showing how to process this data for
r]n

Qea Cnnnnnnn to-Saagence-Tranclat

n 1017
OO TquUCIiivtT TrFansSiation

5.
Time Steps

ap-la
Gccopy Luulxlllly, SCC—OoOCTUw"

Using Attention” on page 2-1

1-43

1 extData Preparation

Data Set Description Task
Finance Reports The Securities and Exchange Commission (SEC) allows |Sentiment analysis
you to access financial reports via the Electronic Data
Gathering, Analysis, and Retrieval (EDGAR) API. For
more ipfor@&t&gaé%https%@%ﬁec.gov/os/
qm%%%%ﬁ"‘?dgarzdfta' _ share securities
subpara namhwn@&)dd'ﬁhﬁa};{d Biustatements
seplembil SRR BPRFFRRIIETS |
operationgy the availpble
reference exmaﬂmf ﬁ g EFiaé mGIDm =
duration vaiue
| fingncial - Uri = | v
nLlr"‘ltuurIssu o t fI ended equity
repor Qem -S it eeaFﬂl‘itr maxlpnggwhrrﬂ
zsses sachion, LY IS stocl. pex -
ate t 1Co
net cash C@I | Iﬁgnﬂy Elﬁll‘é@'{ﬁ ated
- T amount e xbrli @Efnene
hegss, balance peri 6d paragraph
e definition™ = 5 december
capital publisher rererence .
months subtopi reporting
Namespace perfar e
exchange
See Also
More About

“Extract Text Data from Files” on page 1-2
“Parse HTML and Extract Text Content” on page 1-18
“Prepare Text Data for Analysis” on page 1-11

“Analyze Text Data Containing Emojis” on page 2-52

“Create Simple Text Model for Classification” on page 2-2

“Classify Text Data Using Deep Learning” on page 2-90

“Analyze Text Data Using Topic Models” on page 2-13

“Analyze Sentiment in Text” on page 2-58

“Sequence-to-Sequence Translation Using Attention” on page 2-135
“Generate Text Using Deep Learning” (Deep Learning Toolbox)

https://www.sec.gov/os/accessing-edgar-data
https://www.sec.gov/os/accessing-edgar-data

Modeling and Prediction

* “Create Simple Text Model for Classification” on page 2-2

* “Analyze Text Data Using Multiword Phrases” on page 2-7

* “Analyze Text Data Using Topic Models” on page 2-13

* “Choose Number of Topics for LDA Model” on page 2-19

* “Compare LDA Solvers” on page 2-23

* “Visualize LDA Topics Using Word Clouds” on page 2-28

* “Visualize LDA Topic Probabilities of Documents” on page 2-30

* “Visualize Document Clusters Using LDA Model” on page 2-35

* “Visualize LDA Topic Correlations” on page 2-38

* “Visualize Correlations Between LDA Topics and Document Labels” on page 2-42
* “Create Co-occurrence Network” on page 2-48

* “Analyze Text Data Containing Emojis” on page 2-52

* “Analyze Sentiment in Text” on page 2-58

* “Generate Domain Specific Sentiment Lexicon” on page 2-61

* “Train a Sentiment Classifier” on page 2-71

» “Extract Keywords from Text Data Using RAKE” on page 2-79

* “Extract Keywords from Text Data Using TextRank” on page 2-82

* “Classify Documents Using Document Embeddings” on page 2-85

* “Classify Text Data Using Deep Learning” on page 2-90

» “Classify Text Data Using Convolutional Neural Network” on page 2-98
» “Classify Text Data Using Custom Training Loop” on page 2-105

+ “Multilabel Text Classification Using Deep Learning” on page 2-116

* “Sequence-to-Sequence Translation Using Attention” on page 2-135

* “Language Translation Using Deep Learning” on page 2-149

* “Classify Out-of-Memory Text Data Using Deep Learning” on page 2-171
* “Pride and Prejudice and MATLAB” on page 2-177

* “Word-By-Word Text Generation Using Deep Learning” on page 2-183

* “Generate Text Using Autoencoders” on page 2-190

* “Define Text Encoder Model Function” on page 2-202

* “Define Text Decoder Model Function” on page 2-209

* “Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore” on page 2-216

2 Modeling and Prediction

Create Simple Text Model for Classification

2-2

This example shows how to train a simple text classifier on word frequency counts using a bag-of-

words model.

You can create a simple classification model which uses word frequency counts as predictors. This
example trains a simple classification model to predict the category of factory reports using text

descriptions.

Load and Extract Text Data

Load the example data. The file factoryReports. csv contains factory reports, including a text

description and categorical labels for each report.

filename = "factoryReports.csv";
data = readtable(filename, 'TextType', 'string');
head(data)

ans=8x5 table
Description

"Items are occasionally getting stuck in the scanner spools.
"Loud rattling and banging sounds are coming from assembler pistons."
"There are cuts to the power when starting the plant."

"Fried capacitors in the assembler."

"Mixer tripped the fuses."

"Burst pipe in the constructing agent is spraying coolant."

"A fuse is blown in the mixer."

"Things continue to tumble off of the belt."

Category

"Mechanical
"Mechanical
"Electronic
"Electronic
"Electronic
"Leak"

"Electronic
"Mechanical

Convert the labels in the Category column of the table to categorical and view the distribution of the

classes in the data using a histogram.

data.Category = categorical(data.Category);
figure

histogram(data.Category)

xlabel("Class")

ylabel("Frequency")

title("Class Distribution™)

Failure!
Failure!
Failure!
Failure!
Failure!

Failure!
Failure!

Create Simple Text Model for Classification

Class Distribution
250 T T T T

Frequency

Partition the data into a training partition and a held-out test set. Specify the holdout percentage to

be 10%.

cvp = cvpartition(data.Category, 'Holdout',0.1);
dataTrain = data(cvp.training,:);
dataTest = data(cvp.test,:);

Extract the text data and labels from the tables.

textDataTrain = dataTrain.Description;
textDataTest = dataTest.Description;
YTrain = dataTrain.Category;

YTest = dataTest.Category;

Prepare Text Data for Analysis

Create a function which tokenizes and preprocesses the text data so it can be used for analysis. The

function preprocessText, performs the following steps in order:

Tokenize the text using tokenizedDocument.

Lemmatize the words using normalizeWords.
Erase punctuation using erasePunctuation.
Remove words with 2 or fewer characters using removeShortWords.

D U1 A W N M

Remove words with 15 or more characters using removelLongWords.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.

2 Modeling and Prediction

2-4

Use the example preprocessing function preprocessText to prepare the text data.

documents = preprocessText(textDataTrain);
documents(1:5)

ans =
5x1 tokenizedDocument:

tokens: items occasionally get stuck scanner spool
tokens: loud rattle bang sound come assembler piston
tokens: cut power start plant

tokens: fry capacitor assembler

tokens: mixer trip fuse

wwhJo

Create a bag-of-words model from the tokenized documents.

bag bag0OfWords (documents)

bag =
bagOfWords with properties:

Counts: [432x336 double]
Vocabulary: [1x336 string]
NumWords: 336
NumDocuments: 432

Remove words from the bag-of-words model that do not appear more than two times in total. Remove
any documents containing no words from the bag-of-words model, and remove the corresponding
entries in labels.

bag = removelInfrequentWords(bag,2);
[bag,idx] = removeEmptyDocuments(bag);
YTrain(idx) = [1;

bag

bag =
bag0fWords with properties:

Counts: [432x155 double]
Vocabulary: [1x155 string]
NumWords: 155
NumDocuments: 432

Train Supervised Classifier

Train a supervised classification model using the word frequency counts from the bag-of-words model
and the labels.

Train a multiclass linear classification model using fitcecoc. Specify the Counts property of the
bag-of-words model to be the predictors, and the event type labels to be the response. Specify the
learners to be linear. These learners support sparse data input.

XTrain = bag.Counts;
mdl = fitcecoc(XTrain,YTrain, 'Learners', 'linear"')

mdl =
CompactClassificationECOC

Create Simple Text Model for Classification

ResponseName: 'Y
ClassNames: [Electronic Failure Leak Mechanical Failure Software Failure]
ScoreTransform: 'none'
BinarylLearners: {6x1 cell}
CodingMatrix: [4x6 double]

Properties, Methods

For a better fit, you can try specifying different parameters of the linear learners. For more
information on linear classification learner templates, see templateLinear.

Test Classifier

Predict the labels of the test data using the trained model and calculate the classification accuracy.
The classification accuracy is the proportion of the labels that the model predicts correctly.

Preprocess the test data using the same preprocessing steps as the training data. Encode the
resulting test documents as a matrix of word frequency counts according to the bag-of-words model.

documentsTest = preprocessText(textDataTest);
XTest = encode(bag,documentsTest);

Predict the labels of the test data using the trained model and calculate the classification accuracy.

YPred = predict(mdl,XTest);
acc = sum(YPred == YTest)/numel(YTest)

acc = 0.8542
Predict Using New Data

Classify the event type of new factory reports. Create a string array containing the new factory
reports.

str = [
"Coolant is pooling underneath sorter."
"Sorter blows fuses at start up."
"There are some very loud rattling sounds coming from the assembler."];
documentsNew = preprocessText(str);
XNew = encode(bag,documentsNew) ;
labelsNew = predict(mdl,XNew)

labelsNew = 3x1 categorical
Leak

Electronic Failure
Mechanical Failure

Example Preprocessing Function
The function preprocessText, performs the following steps in order:

1 Tokenize the text using tokenizedDocument.
2 Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
3 Lemmatize the words using normalizeWords.

2-5

2 Modeling and Prediction

2-6

4 FErase punctuation using erasePunctuation.
5 Remove words with 2 or fewer characters using removeShortWords.
6 Remove words with 15 or more characters using removeLongWords.

function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument(textData);

% Remove a list of stop words then lemmatize the words. To improve
% lemmatization, first use addPartOfSpeechDetails.

documents = addPartOfSpeechDetails(documents);
documents = removeStopWords(documents);
documents = normalizeWords(documents, 'Style', 'lemma');

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove words with 2 or fewer characters, and words with 15 or more
% characters.

documents = removeShortWords (documents,?2);

documents = removelLongWords(documents,15);

end

See Also

erasePunctuation | tokenizedDocument | bag0OfWords | removeStopWords |
removeLongWords | removeShortWords | normalizeWords | wordcloud |
addPart0fSpeechDetails | encode

Related Examples

. “Analyze Text Data Using Topic Models” on page 2-13

. “Analyze Text Data Using Multiword Phrases” on page 2-7

. “Analyze Text Data Containing Emojis” on page 2-52

. “Train a Sentiment Classifier” on page 2-71

. “Classify Text Data Using Deep Learning” on page 2-90

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)

Analyze Text Data Using Multiword Phrases

Analyze Text Data Using Multiword Phrases

This example shows how to analyze text using n-gram frequency counts.

An n-gram is a tuple of n consecutive words. For example, a bigram (the case when n = 2) is a pair of
consecutive words such as "heavy rainfall”. A unigram (the case when n = 1) is a single word. A bag-
of-n-grams model records the number of times that different n-grams appear in document collections.

Using a bag-of-n-grams model, you can retain more information on word ordering in the original text
data. For example, a bag-of-n-grams model is better suited for capturing short phrases which appear
in the text, such as "heavy rainfall" and "thunderstorm winds".

To create a bag-of-n-grams model, use bag0fNgrams. You can input bagOfNgrams objects into other
Text Analytics Toolbox functions such as wordcloud and fitlda.

Load and Extract Text Data

Load the example data. The file factoryReports. csv contains factory reports, including a text
description and categorical labels for each event. Remove the rows with empty reports.

filename = "factoryReports.csv";
data = readtable(filename,TextType="string");

Extract the text data from the table and view the first few reports.

textData = data.Description;
textData(1:5)

ans = 5x1 string
"Items are occasionally getting stuck in the scanner spools."
"Loud rattling and banging sounds are coming from assembler pistons."
"There are cuts to the power when starting the plant."
"Fried capacitors in the assembler."
"Mixer tripped the fuses."

Prepare Text Data for Analysis

Create a function which tokenizes and preprocesses the text data so it can be used for analysis. The
function preprocessText listed at the end of the example, performs the following steps:

Convert the text data to lowercase using lLower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.

Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removeLongWords.

N OO o A W N KR

Lemmatize the words using normalizeWords.

Use the example preprocessing function preprocessText to prepare the text data.

documents = preprocessText(textData);
documents(1:5)

2-7

2 Modeling and Prediction

ans =

5x1 tokenizedDocument:

wwhIJo

tokens: item occasionally get stuck scanner spool
tokens: loud rattling bang sound come assembler piston
tokens: cut power start plant

tokens: fry capacitor assembler

tokens: mixer trip fuse

Create Word Cloud of Bigrams

Create a word cloud of bigrams by first creating a bag-of-n-grams model using bag0fNgrams, and
then inputting the model to wordcloud.

To count the n-grams of length 2 (bigrams), use bag0fNgrams with the default options.

bag = bag0fNgrams(documents)

bag =

bagOfNgrams with properties:

Counts:
Vocabulary:
Ngrams:
NgramLengths:
NumNgrams:
NumDocuments:

[480%x921 double]

["item" "occasionally" "get" "stuck" "scanner" “loud"
[921x2 string]

2

921

480

Visualize the bag-of-n-grams model using a word cloud.

figure
wordcloud(bag);

title("Text Data:

Preprocessed Bigrams")

"rattl:

Analyze Text Data Using Multiword Phrases

Text Data: Preprocessed Bigrams

coninol su DDy
dedect fhow
& ey = Cund Foanmer nofler
amoke amil

controner poammng. @SSEMble product 725 0L

beking sound wmmmm%t“f kum nexpectedly e
inside scanner f SIUCK sCanner N
use blow I
e emoing”CONVEyoTr belttransport line
rﬂmersmnmng 3’ emicoet high pitch
hot touch ... * sound emit
assembler overheat ’[I‘I anlS
rattle sound Sound hear PIUSE...
el i‘:l';l e get stuck burst pipe fo belt == Spray coolant

e i black smoketumwe off
aorier plant time time fﬂ” fo OOEET 508

blow fuse ,g.__, nc faila connect

GO M iweT L
shg it feckang Spo] SCanner
soflerengine e leave scanner
neglect mterdace Qorier g

ol wWhane sser

Sﬂf‘““’“scan ner spool electrical sound

sign wear coclant laak

power sunply hear insidecrack appear,
=wssone SOUNA COMeE construction agent

fuse controller Emi mer highgpitchexd sound
sme s Shake sound material get
STWOAN 85 SET D

Fit Topic Model to Bag-of-N-Grams

A Latent Dirichlet Allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers the word probabilities in topics.

Create an LDA topic model with 10 topics using fitlda. The function fits an LDA model by treating
the n-grams as single words.

mdl = fitlda(bag,10,Verbose=0);
Visualize the first four topics as word clouds.

figure

tiledlayout("flow");

for i = 1:4
nexttile
wordcloud(mdl,1i);
title("LDA Topic " + i)

end

2-9

2 Modeling and Prediction

LDA Topic 1 LDA Topic 2

consfruct agent

== gatstuck

LDA Topic 3 LDA Topic 4

wtimg g i 11l s e "
~ sound hear ‘robot arm
haar insida i 1ok, appaar

s e o d
Al i i mting

The word clouds highlight commonly co-occurring bigrams in the LDA topics. The function plots the
bigrams with sizes according to their probabilities for the specified LDA topics.

Analyze Text Using Longer Phrases

To analyze text using longer phrases, specify the NGramLengths option in bagOfNgrams to be a
larger value.

When working with longer phrases, it can be useful to keep stop words in the model. For example, to
detect the phrase "is not happy", keep the stop words "is" and "not" in the model.

Preprocess the text. Erase the punctuation using erasePunctuation, and tokenize using
tokenizedDocument.

cleanTextData = erasePunctuation(textData);
documents = tokenizedDocument(cleanTextData);

To count the n-grams of length 3 (trigrams), use bag0fNgrams and specify NGramLengths to be 3.
bag = bagOfNgrams(documents,NGramLengths=3);

Visualize the bag-of-n-grams model using a word cloud. The word cloud of trigrams better shows the
context of the individual words.

figure

wordcloud(bag) ;
title("Text Data: Trigrams")

2-10

Analyze Text Data Using Multiword Phrases

Text Data: Trigrams

fnom conatrecting agent ok g Sowund emitied

H o heand n
the construction agent =% "o

sound heard inside == ees

Fuss = blown . hot to the
is stuck in ~ °' " e heard in the - n the batiom
wierset FUSE blown in time to time === bottom of the

s s SOTTIE O the StUCK in the from time to ==tz
to connect 1o -, - to interface with
siound emifted from Burat pip in blown In the appe.a”.ng in the
~of the mixer , =z, eseisseema o o n the assembler
L biownin | the IMIXET inscanner spools
the bottom of)

oemee [tHE SCANNET of ihe scanner

of e assembler

Slgns Df wear the rDth arm i5 hot 10 nside constructing agent

power cuts when

r'lE‘*g'E‘CtS to interface IS Spray”ﬂlg CDDIant connect to the sounds neard insde
off the belt peaiorine <= oM the MIXEr ne oo s
e Hoor under
oy e assemiber) on the ﬂ[][]r e . -
coolant in the et e conlietS St the robot
mmme seanner SOUN coming from staring 1o spit

sound in the Assembler is overheating
3 OWeEned o e consincing agpent
giuck in acanner
View the top 10 trigrams and their frequency counts using topkngrams.

tbl = topkngrams(bag,10)

tb1=10x3 table

Ngram Count NgramLength
"in" "the" "mixer" 14 3
"in" "the" "scanner" 13 3
"blown" "in" "the" 9 3
"the" "robot" "arm" 7 3
"stuck" "in" "the" 6 3
"is" "spraying" "coolant" 6 3
"from" "time" "to" 6 3
"time" "to" "time" 6 3
"heard" "in" "the" 6 3
"on" "the" "floor" 6 3

Example Preprocessing Function

The function preprocessText performs the following steps in order:

1 Convert the text data to lowercase using lower.
2 Tokenize the text using tokenizedDocument.

2-11

2 Modeling and Prediction

2-12

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

N o U1 AW

Lemmatize the words using normalizeWords.

function documents = preprocessText(textData)

% Convert the text data to lowercase.
cleanTextData = lower(textData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents removeShortWords (documents,?2);

documents removeLongWords (documents, 15);

% Lemmatize the words.

documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents,Style="1lemma");
end

See Also

tokenizedDocument | bag0fWords | removeStopWords | erasePunctuation |
removeLongWords | removeShortWords | bagOfNgrams | normalizeWords | topkngrams |
fitlda | ldaModel | wordcloud | addPartOfSpeechDetails

Related Examples

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Containing Emojis” on page 2-52

. “Analyze Text Data Using Topic Models” on page 2-13

. “Train a Sentiment Classifier” on page 2-71

. “Classify Text Data Using Deep Learning” on page 2-90

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)

Analyze Text Data Using Topic Models

Analyze Text Data Using Topic Models

This example shows how to use the Latent Dirichlet Allocation (LDA) topic model to analyze text data.

A Latent Dirichlet Allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers the word probabilities in topics.

Load and Extract Text Data

Load the example data. The file factoryReports.csv contains factory reports, including a text
description and categorical labels for each event.

data = readtable("factoryReports.csv",TextType="string");

head(data)
ans=8x5 table
Description Category

"Items are occasionally getting stuck in the scanner spools." "Mechanical Failure
"Loud rattling and banging sounds are coming from assembler pistons." "Mechanical Failure
"There are cuts to the power when starting the plant." "Electronic Failure
"Fried capacitors in the assembler." "Electronic Failure
"Mixer tripped the fuses." "Electronic Failure
"Burst pipe in the constructing agent is spraying coolant." "Leak"
"A fuse is blown in the mixer." "Electronic Failure
"Things continue to tumble off of the belt." "Mechanical Failure

Extract the text data from the field Description.

textData = data.Description;
textData(1:10)

ans

= 10x1 string

"Items are occasionally getting stuck in the scanner spools.

"Loud rattling and banging sounds are coming from assembler
"There are cuts to the power when starting the plant.”
"Fried capacitors in the assembler."

"Mixer tripped the fuses."

"Burst pipe in the constructing agent is spraying coolant."
"A fuse is blown in the mixer."

"Things continue to tumble off of the belt."

"Falling items from the conveyor belt."

"The scanner reel is split, it will soon begin to curve."

Prepare Text Data for Analysis

pistons."

Create a function which tokenizes and preprocesses the text data so it can be used for analysis. The
function preprocessText, listed in the Preprocessing Function on page 2-17 section of the
example, performs the following steps in order:

1
2

Tokenize the text using tokenizedDocument.
Lemmatize the words using normalizeWords.

2-13

2 Modeling and Prediction

2-14

Erase punctuation using erasePunctuation.
Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

N AW

Remove words with 15 or more characters using removelLongWords.

Prepare the text data for analysis using the preprocessText function.

documents

= preprocessText (textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

tokens: item occasionally get stuck scanner spool
tokens: loud rattling bang sound come assembler piston
tokens: cut power start plant

tokens: fry capacitor assembler

tokens: mixer trip fuse

wwhado

Create a bag-of-words model from the tokenized documents.

bag bagO0fWords (documents)

bag =
bagOfWords with properties:

Counts: [480x338 double]
Vocabulary: [1x338 string]
NumWords: 338
NumDocuments: 480

Remove words from the bag-of-words model that have do not appear more than two times in total.
Remove any documents containing no words from the bag-of-words model.

bag = removelnfrequentWords(bag,2);
bag = removeEmptyDocuments(bag)
bag =

bag0fWords with properties:

Counts: [480x158 double]
Vocabulary: [1x158 string]
NumWords: 158
NumDocuments: 480

Fit LDA Model

Fit an LDA model with 7 topics. For an example showing how to choose the number of topics, see
“Choose Number of Topics for LDA Model” on page 2-19. To suppress verbose output, set the
Verbose option to 0. For reproducibility, use the rng function with the "default" option.

rng("default")
numTopics = 7;
mdl = fitlda(bag,numTopics,Verbose=0);

Analyze Text Data Using Topic Models

If you have a large dataset, then the stochastic approximate variational Bayes solver is usually better
suited as it can fit a good model in fewer passes of the data. The default solver for fitlda (collapsed
Gibbs sampling) can be more accurate at the cost of taking longer to run. To use stochastic
approximate variational Bayes, set the Solver option to "savb". For an example showing how to
compare LDA solvers, see “Compare LDA Solvers” on page 2-23.

Visualize Topics Using Word Clouds

You can use word clouds to view the words with the highest probabilities in each topic. Visualize the
topics using word clouds.

figure
t = tiledlayout("flow");
title(t,"LDA Topics")

for i = 1l:numTopics
nexttile
wordcloud(mdl,i);
title("Topic " + 1)
end

LDA Topics
Topic 1 Topic 2 Topic 3
i gt et vy 134 b

;S ETTIDNE)

LCKE lma

‘e MiXEr "7 wa SCANNET 0l nd
e, SO wock jam AQENT maiz gent rami
Tanspt gowmetames casiue insida
L s e ey . e
Topic 5 Topic 6
wtrar MY 22 mombd o ceriiar
; ek s ‘COOlENt 313:,!. o ke
e i) ==} miel ._ P e ey
ke SCANNET wemdar [TIXET = L arm san
hend APEEar Blaw £ 1em 5 ! robot wear ¢
cecasionally Spbl B r.:L: ow use " conird ;:I“:I\‘:!. e
mas contol ket T b
dbcd wwt s s
Topic 7

View Mixtures of Topics in Documents

Create an array of tokenized documents for a set of previously unseen documents using the same
preprocessing function as the training data.

str = [
"Coolant is pooling underneath assembler."

2-15

2 Modeling and Prediction

2-16

"Sorter blows fuses at start up."
"There are some very loud rattling sounds coming from the assembler."];

newDocuments = preprocessText(str);

Use the transform function to transform the documents into vectors of topic probabilities. Note that

for very short documents, the topic mixtures may not be a strong representation of the document
content.

topicMixtures = transform(mdl,newDocuments);

Plot the document topic probabilities of the first document in a bar chart. To label the topics, use the
top three words of the corresponding topic.

for 1 = l:numTopics
top = topkwords(mdl,3,1i);
topWords(i) = join(top.Word,", ");
end

figure
bar(topicMixtures(1l,:))

xLlabel("Topic")
xticklabels(topWords);
ylabel("Probability")

title("Document Topic Probabilities")

Document Topic Probabilities
D4‘ T T T T T T T

0.35

Probability
= = =
o

=
=
£n

0.1

Analyze Text Data Using Topic Models

Visualize multiple topic mixtures using stacked bar charts. Visualize the topic mixtures of the
documents.

figure
barh(topicMixtures, "stacked")
xlim([0 17])

title("Topic Mixtures")
xlabel("Topic Probability")
ylabel("Document")

legend(topWords,
Location="southoutside",
NumColumns=2)

Topic Mixtures

Document

0 01 02 03 04 05 06 07 08 09 1
Topic Probability

I mixer, sound, assembler [0 mixer, fuse, coalant
-scanner, agent, stuck -arrn, robat, smoke

[sound, agent, hear I :oitware, sorter, controller
I < canner, appear, spoal

Preprocessing Function

The function preprocessText, performs the following steps in order:

Tokenize the text using tokenizedDocument.

Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

A U1 A W N M=

Remove words with 15 or more characters using removelLongWords.

2-17

2 Modeling and Prediction

2-18

function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument (textData);

% Lemmatize the words.
documents addPart0fSpeechDetails(documents);
documents normalizeWords (documents,Style="1lemma");

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents = removeShortWords (documents,?2);

documents = removelLongWords(documents,15);

end

See Also
tokenizedDocument | bag0fWords | removeStopWords | fitlda | ldaModel | wordcloud |
addPart0fSpeechDetails | removeEmptyDocuments | removeInfrequentWords | transform

Related Examples

. “Visualize Document Clusters Using LDA Model” on page 2-35

. “Visualize LDA Topic Correlations” on page 2-38

. “Visualize Correlations Between LDA Topics and Document Labels” on page 2-42
. “Analyze Text Data Using Multiword Phrases” on page 2-7

. “Classify Text Data Using Deep Learning” on page 2-90

Choose Number of Topics for LDA Model

Choose Number of Topics for LDA Model

This example shows how to decide on a suitable number of topics for a latent Dirichlet allocation
(LDA) model.

To decide on a suitable number of topics, you can compare the goodness-of-fit of LDA models fit with
varying numbers of topics. You can evaluate the goodness-of-fit of an LDA model by calculating the
perplexity of a held-out set of documents. The perplexity indicates how well the model describes a set
of documents. A lower perplexity suggests a better fit.

Extract and Preprocess Text Data

Load the example data. The file factoryReports.csv contains factory reports, including a text
description and categorical labels for each event. Extract the text data from the field Description.

filename = "factoryReports.csv";
data = readtable(filename, 'TextType', 'string');
textData = data.Description;

Tokenize and preprocess the text data using the function preprocessText which is listed at the end
of this example.

documents

= preprocessText (textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

tokens: item occasionally get stuck scanner spool
tokens: loud rattle bang sound come assembler piston
tokens: cut power start plant

tokens: fry capacitor assembler

tokens: mixer trip fuse

wWwh9do

Set aside 10% of the documents at random for validation.

numbDocuments = numel(documents);

cvp = cvpartition(numDocuments, 'HoldOut',0.1);
documentsTrain = documents(cvp.training);
documentsValidation = documents(cvp.test);

Create a bag-of-words model from the training documents. Remove the words that do not appear
more than two times in total. Remove any documents containing no words.

bag = bag0fWords(documentsTrain);
bag = removeInfrequentWords(bag,2);
bag = removeEmptyDocuments(bag);

Choose Number of Topics

The goal is to choose a number of topics that minimize the perplexity compared to other numbers of
topics. This is not the only consideration: models fit with larger numbers of topics may take longer to
converge. To see the effects of the tradeoff, calculate both goodness-of-fit and the fitting time. If the
optimal number of topics is high, then you might want to choose a lower value to speed up the fitting
process.

2-19

2 Modeling and Prediction

2-20

Fit some LDA models for a range of values for the number of topics. Compare the fitting time and the
perplexity of each model on the held-out set of test documents. The perplexity is the second output to
the logp function. To obtain the second output without assigning the first output to anything, use the
~ symbol. The fitting time is the TimeSinceStart value for the last iteration. This value is in the
History struct of the FitInfo property of the LDA model.

For a quicker fit, specify 'Solver' to be 'savb'. To suppress verbose output, set 'Verbose' to 0.
This may take a few minutes to run.

numTopicsRange = [5 10 15 20 401];
for i = l:numel(numTopicsRange)
numTopics = numTopicsRange(i);

mdl = fitlda(bag,numTopics,
'Solver', 'savb',
'Verbose',0);

[~,validationPerplexity(i)] = logp(mdl,documentsValidation);
timeElapsed(i) = mdl.FitInfo.History.TimeSinceStart(end);
end

Show the perplexity and elapsed time for each number of topics in a plot. Plot the perplexity on the
left axis and the time elapsed on the right axis.

figure

yyaxis left
plot(numTopicsRange,validationPerplexity, '+-"')
ylabel("Validation Perplexity")

yyaxis right
plot(numTopicsRange, timeElapsed, 'o-"')
ylabel("Time Elapsed (s)")

legend(["Validation Perplexity" "Time Elapsed (s)"],'Location', 'southeast')
xLlabel("Number of Topics")

Choose Number of Topics for LDA Model

04 4 T T T T T T ¥
| z.--""f. _I:r.\, [=
94,2 - o
/';/- e
o4 4 /
_Tx /
LY -~ i - E =4
E"' g; E - '\'\.\. /f o~
T M, o 4 W
@ N, // ~ -
o Y) Yy 12 =
D936\ / o
['N , o . o
= A . e 145 =
=] kY = ra L
= 93.4 4 S -
\ !] -
= - 4
g 932 b = e
- "'-. // 13.5
03 \ / 14
! 4
\ / — .
928/ / —t—Validation Perplexity | { o 5
o l"I--________ Vd =— Time Elapsed (s)
92.6 ' ' i ' ' ' 2
5 10 15 20 25 30 35 40

Mumber of Topics

The plot suggests that fitting a model with 10-20 topics may be a good choice. The perplexity is low
compared with the models with different numbers of topics. With this solver, the elapsed time for this
many topics is also reasonable. With different solvers, you may find that increasing the number of
topics can lead to a better fit, but fitting the model takes longer to converge.

Example Preprocessing Function

The function preprocessText, performs the following steps in order:

Convert the text data to lowercase using Lower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

N o ot A W N

Lemmatize the words using normalizeWords.
function documents = preprocessText(textData)

% Convert the text data to lowercase.
cleanTextData = lower(textData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

2-21

2 Modeling and Prediction

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents = removeShortWords (documents,?2);

documents = removelLongWords(documents,15);

% Lemmatize the words.

documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents, 'Style', 'lemma');
end

See Also

tokenizedDocument | bag0fWords | removeStopWords | Logp | bag0fWords | fitlda |
ldaModel | erasePunctuation | removeShortWords | removeLongWords | normalizeWords |
addPart0fSpeechDetails | removeInfrequentWords | removeEmptyDocuments

Related Examples

. “Analyze Text Data Using Topic Models” on page 2-13

. “Compare LDA Solvers” on page 2-23

. “Visualize Document Clusters Using LDA Model” on page 2-35

. “Visualize LDA Topic Correlations” on page 2-38

. “Visualize Correlations Between LDA Topics and Document Labels” on page 2-42

2-22

Compare LDA Solvers

Compare LDA Solvers

This example shows how to compare latent Dirichlet allocation (LDA) solvers by comparing the
goodness of fit and the time taken to fit the model.

Import Text Data

Import a set of abstracts and category labels from math papers using the arXiv API. Specify the
number of records to import using the importSize variable.

importSize = 50000;
Create a URL that queries records with set "math" and metadata prefix "arXiv".

url = "https://export.arxiv.org/oai2?verb=ListRecords" + ...
"&set=math" + ...
"&metadataPrefix=arXiv";

Extract the abstract text and the resumption token returned by the query URL using the
parseArXivRecords function which is attached to this example as a supporting file. To access this
file, open this example as a live script. Note that the arXiv API is rate limited and requires waiting
between multiple requests.

[textData,~, resumptionToken] = parseArXivRecords(url);

[teratively import more chunks of records until the required amount is reached, or there are no more
records. To continue importing records from where you left off, use the resumption token from the
previous result in the query URL. To adhere to the rate limits imposed by the arXiv API, add a delay
of 20 seconds before each query using the pause function.

while numel(textData) < importSize

if resumptionToken ==

break

end

url = "https://export.arxiv.org/oai2?verb=ListRecords" + ...
"&resumptionToken=" + resumptionToken;

pause(20)

[textDataNew, labelsNew, resumptionToken] = parseArXivRecords(url);

textData = [textData; textDataNew];
end

Preprocess Text Data

Set aside 10% of the documents at random for validation.

numDocuments = numel(textData);

cvp = cvpartition(numDocuments, 'HoldOut',0.1);
textDataTrain = textData(training(cvp));
textDataValidation = textData(test(cvp));

Tokenize and preprocess the text data using the function preprocessText which is listed at the end
of this example.

2-23

2 Modeling and Prediction

documentsTrain = preprocessText(textDataTrain);
documentsValidation = preprocessText(textDataValidation);

Create a bag-of-words model from the training documents. Remove the words that do not appear
more than two times in total. Remove any documents containing no words.

bag = bag0OfWords(documentsTrain);
bag = removelnfrequentWords(bag,2);
bag = removeEmptyDocuments(bag);

For the validation data, create a bag-of-words model from the validation documents. You do not need
to remove any words from the validaiton data because any words that do not appear in the fitted LDA
models are automatically ignored.

validationData = bagOfWords(documentsValidation);

Fit and Compare Models

For each of the LDA solvers, fit a model with 40 topics. To distinguish the solvers when plotting the
results on the same axes, specify different line properties for each solver.

numTopics = 40;
solvers = ["cgs" "avb" "cvb0" "savb"];
'Linespecs = [II+_II II*_II IIX_II IIO_II];

Fit an LDA model using each solver. For each solver, specify the initial topic concentration 1, to
validate the model once per data pass, and to not fit the topic concentration parameter. Using the
data in the FitInfo property of the fitted LDA models, plot the validation perplexity and the time
elapsed.

The stochastic solver, by default, uses a mini-batch size of 1000 and validates the model every 10
iterations. For this solver, to validate the model once per data pass, set the validation frequency to
ceil(numObservations/1000), where numObservations is the number of documents in the
training data. For the other solvers, set the validation frequency to 1.

For the iterations that the stochastic solver does not evaluate the validation perplexity, the stochastic
solver reports NaN in the FitInfo property. To plot the validation perplexity, remove the NaNs from
the reported values.

numObservations = bag.NumDocuments;

figure

for i = l:numel(solvers)
solver = solvers(i);
lineSpec = lineSpecs(i);

if solver == "savb"

numIterationsPerDataPass = ceil (numObservations/1000);
else

numIterationsPerDataPass = 1;
end

mdl = fitlda(bag,numTopics,
'Solver',solver,
'InitialTopicConcentration',1,
'FitTopicConcentration', false,
'ValidationData',validationData,

2-24

Compare LDA Solvers

'ValidationFrequency',numIterationsPerDataPass,
'Verbose',0);

history = mdl.FitInfo.History;
timeElapsed = history.TimeSinceStart;
validationPerplexity = history.ValidationPerplexity;

% Remove NalNs.

idx = isnan(validationPerplexity);
timeElapsed(idx) = [];
validationPerplexity(idx) = [];

plot(timeElapsed,validationPerplexity, lineSpec)
hold on
end

hold off

xlabel("Time Elapsed (s)")
ylabel("Validation Perplexity")
ylim([0® inf])

legend(solvers)

—#F—avb

cvhi
1400 —i=—=x5avh

1500& — g |-
1
L1

—

[

2

=]
T

1

o w |

800

600 7

Walidation Perplexity

400 7

2001 7

D i i i i
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time Elapsed (s)

For the stochastic solver, there is only one data point. This is because this solver passes through input
data once. To specify more data passes, use the 'DataPassLimit' option. For the batch solvers

2-25

2 Modeling and Prediction

2-26

("cgs", "avb", and "cvb0"), to specify the number of iterations used to fit the models, use the
'"IterationLimit' option.

A lower validation perplexity suggests a better fit. Usually, the solvers "savb" and "cgs" converge
quickly to a good fit. The solver "cvb@" might converge to a better fit, but it can take much longer to
converge.

For the FitInfo property, the fitlda function estimates the validation perplexity from the
document probabilities at the maximum likelihood estimates of the per-document topic probabilities.
This is usually quicker to compute, but can be less accurate than other methods. Alternatively,
calculate the validation perplexity using the Logp function. This function calculates more accurate
values but can take longer to run. For an example showing how to compute the perplexity using
logp, see “Calculate Document Log-Probabilities from Word Count Matrix”.

Preprocessing Function

The function preprocessText performs the following steps:

Tokenize the text using tokenizedDocument.

Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

S U A W N M

Remove words with 15 or more characters using removeLongWords.
function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument(textData);

% Lemmatize the words.
documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents, 'Style', 'lemma');
% Erase punctuation.

documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents = removeShortWords(documents,2);

documents = removelLongWords(documents,15);

end

See Also

tokenizedDocument | bag0fWords | removeStopWords | Llogp | fitlda | ldaModel | wordcloud
| removeInfrequentWords | removeEmptyDocuments | erasePunctuation |
removeShortWords | removeLongWords | normalizeWords | addPartOfSpeechDetails

Compare LDA Solvers

Related Examples

. “Analyze Text Data Using Topic Models” on page 2-13

. “Choose Number of Topics for LDA Model” on page 2-19

. “Visualize Document Clusters Using LDA Model” on page 2-35

. “Visualize LDA Topic Correlations” on page 2-38

. “Visualize Correlations Between LDA Topics and Document Labels” on page 2-42

2-27

2 Modeling and Prediction

Visualize LDA Topics Using Word Clouds

2-28

This example shows how to visualize the words in Latent Dirichlet Allocation (LDA) model topics.

A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers word probabilities in topics. You can visualize the LDA topics using
word clouds by displaying words with their corresponding topic word probabilities.

Load LDA Model

Load the LDA model factoryReportsLDAModel which is trained using a data set of factory reports
detailing different failure events. For an example showing how to fit an LDA model to a collection of
text data, see “Analyze Text Data Using Topic Models” on page 2-13.

load factoryReportsLDAModel
mdl

mdl =
ldaModel with properties:

NumTopics: 7
WordConcentration: 1
TopicConcentration: 0.5755
CorpusTopicProbabilities: [0.1587 0.1573 0.1551 0.1534 0.1340 ...]
DocumentTopicProbabilities: [480x7 double]
TopicWordProbabilities: [158x7 double]
Vocabulary: ["item" "occasionally" "get" .]
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

Visualize Topics Using Word Clouds

Visualize the topics using the wordcloud function.
numTopics = mdl.NumTopics;

figure
t = tiledlayout("flow");
title(t,"LDA Topics")

for i = 1l:numTopics
nexttile
wordcloud(mdl,i);
title("Topic " + 1)
end

Visualize LDA Topics Using Word Clouds

See Also
tokenizedDocument | fitlda | ldaModel | wordcloud

Topic 1

agyaicted an

""" trical
"ISSEI'I'|| Ier -
v MIXET Z7%

T o) iy bt

plon
wat Qyerheat

iy

Topic 4

assembler
f— 1-'hﬂ'|b-e\:lr ik
we SEIE SP00 crack
vas SCANNET o
cdet BDPEAT ar
O product ©
sl sl oo |onal |y

Topic 7
bl
'.“£Euﬁnr
|: :-uu controller crash
software .o
na S_:I _rt”r_correc

ue

! Clagsifar POSATTEG

Related Examples

L]

LDA Topics

Topic 2
urdermssih
COMENCTON |
comsmucy 951 MaEETA
e STUCK tirne -h'.'-lll
SCEHHEHH

frans port 3““F‘T| e

Somet "|1E’5
sy k

Topic 5

cionirod lar & enmhan
pipe ladt secarmibir
'“““hrﬁ“".

" mixer .
- tlv"n'fl_lse ny

" blemder SSSEMBlY

“Analyze Text Data Using Topic Models” on page 2-13

“Visualize Document Clusters Using LDA Model” on page 2-35
“Visualize LDA Topic Correlations” on page 2-38
“Visualize Correlations Between LDA Topics and Document Labels” on page 2-42

Topic 3
s
rating
SR P

[T | I“ﬂ'jr :\ff High

o aeg

ey et SOUNG srake =

ming - agent rame
COETUS inside o

whirm cylchr g

Topic &

et PRV orfral
@ SMmoke - sien

e g Al plant 70

sa‘u:\ ro b Dt wagr m

[l
a.-s-:er'bler [POWET -
T =3

2-29

2 Modeling and Prediction

Visualize LDA Topic Probabilities of Documents

This example shows how to visualize the topic probabilities of documents using a latent Dirichlet
allocation (LDA) topic model.

A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers word probabilities in topics. You can use an LDA model to
transform documents into a vector of topic probabilities, also known as a topic mixture. You can
visualize the LDA topics using stacked bar charts.

Load LDA Model

Load the LDA model factoryReportsLDAModel which is trained using a data set of factory reports
detailing different failure events. For an example showing how to fit an LDA model to a collection of
text data, see “Analyze Text Data Using Topic Models” on page 2-13.

load factoryReportsLDAModel
mdl

mdl =
ldaModel with properties:

NumTopics: 7
WordConcentration: 1
TopicConcentration: 0.5755
CorpusTopicProbabilities: [0.1587 0.1573 0.1551 0.1534 0.1340 ...]
DocumentTopicProbabilities: [480x7 double]
TopicWordProbabilities: [158x7 double]
Vocabulary: ["item" "occasionally" "get" C]
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

Visualize Topics Using Word Clouds

Visualize the topics using the wordcloud function.

numTopics = mdl.NumTopics;

figure

t = tiledlayout("flow");

title(t,"LDA Topics")

for i = 1l:numTopics
nexttile
wordcloud(mdl,i);
title("Topic " + 1)

end

2-30

Visualize LDA Topic Probabilities of Documents

LDA Topics
Topic 1 Topic 2 Topic 3
aipe EAENDRT erpca conatract. 81 e A Oy E’,’uﬁﬁ:':"_"
~assembler ., o ek time = D | | ok
= [IiXer =T, s SCAMNMNES i ueny gt SOUN snake =
it gound 5 mapot agent ™. ming . agent rame
= Overheat =3P cometimes coneuct inside -
Topic 4 Topic 5 Topic &
assembler o e T s
red ftemn begin pipe lag =S e o SRR ool
e 3501t 5p00] Crach - e coolant™! L “as smoke - s
sHek SEQDD%I e xd rT"IIIrCEI.) e et Al :'_sa_';ﬁ.l
v - PPEAT miler blow fuse == sang ropof wer =
o oroduct . el B S 8T T =] ek
e Elencer Ezzembly assembler |-'\-r"-'-'|%| b

sl o casionally

Topic 7

ik

pragan COntroller crash
L. software o

. enigre _S_U__rt:"j r;co"e\:'.

 classifer PTG

View Mixtures of Topics in Documents

Create an array of tokenized documents for a set of previously unseen documents using the same
preprocessing function used when fitting the model.

The function preprocessText, listed in the Preprocessing Function on page 2-33 section of the
example, performs the following steps in order:

Tokenize the text using tokenizedDocument.

Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

S 1 A W N KR

Remove words with 15 or more characters using removeLongWords.

Prepare the text data for analysis using the preprocessText function.

str = [

"Coolant is pooling underneath assembler."

"Sorter blows fuses at start up."

"There are some very loud rattling sounds coming from the assembler."];
documents = preprocessText(str);

2-31

2 Modeling and Prediction

Transform the documents into vectors of topic probabilities using the transform function. Note that
for very short documents, the topic mixtures may not be a strong representation of the document
content.

topicMixtures = transform(mdl,documents);

Visualize the first topic mixture in a bar chart and label the bars using the top three words from each
topic.

numTopics = mdl.NumTopics;
for 1 = l:numTopics
top = topkwords(mdl,3,1i);
topWords(i) = join(top.Word,", ");
end

figure
bar(categorical(topWords),topicMixtures(1,:))

xLlabel("Topic")
ylabel("Probability")
title("Document Topic Probabilities")

0.4 Document Topic Probabilities

0.35

0.3

0.25

Probability
S e
53]]

e

0.05

Topic

To visualize the proportions of the topics in each document, or to visualize multiple topic mixtures,
use a stacked bar chart.

figure
barh(topicMixtures, "stacked")

2-32

Visualize LDA Topic Probabilities of Documents

title("Topic Mixtures")
xlabel("Topic Probability")
ylabel("Document")

legend(topWords,

Location="southoutside",
NumColumns=2)

Topic Mixtures

Document

0 01 02 03 04 05 06 07 08 09 1
Topic Probability

I mixer, sound, assembler [0 mixer, fuse, coolant
[scanner, agent, stuck [arm, robot, smoke

[1sound, agent, hear I software, sorter, controller
I scanner, appear, spool

The regions of the stacked bar chart represent the proportion of the document belonging to the
corresponding topic.

Preprocessing Function

The function preprocessText, performs the following steps in order:

Tokenize the text using tokenizedDocument.

Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

O U A W N MR

function documents = preprocessText(textData)

2-33

2 Modeling and Prediction

% Tokenize the text.
documents = tokenizedDocument (textData);

% Lemmatize the words.
documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents,Style="1lemma");

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents = removeShortWords (documents,?2);

documents = removelLongWords(documents,15);

end

See Also
tokenizedDocument | fitlda | ldaModel | wordcloud

Related Examples

. “Analyze Text Data Using Topic Models” on page 2-13

. “Visualize Document Clusters Using LDA Model” on page 2-35

. “Visualize LDA Topic Correlations” on page 2-38

. “Visualize Correlations Between LDA Topics and Document Labels” on page 2-42

2-34

Visualize Document Clusters Using LDA Model

Visualize Document Clusters Using LDA Model

This example shows how to visualize the clustering of documents using a Latent Dirichlet Allocation
(LDA) topic model and a t-SNE plot.

A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers word probabilities in topics. The vectors of per-topic word
probabilities characterize the topics. You can evaluate document similarity using an LDA model by
comparing the per-document topic probabilities, also known as topic mixtures.

Load LDA Model

Load the LDA model factoryReportsLDAModel which is trained using a data set of factory reports
detailing different failure events. For an example showing how to fit an LDA model to a collection of
text data, see “Analyze Text Data Using Topic Models” on page 2-13.

load factoryReportsLDAModel
mdl

mdl =
ldaModel with properties:

NumTopics: 7
WordConcentration: 1
TopicConcentration: 0.5755
CorpusTopicProbabilities: [0.1587 0.1573 0.1551 0.1534 0.1340 0.1322 0.1093]
DocumentTopicProbabilities: [480x7 double]
TopicWordProbabilities: [158x7 double]
Vocabulary: [1x158 string]
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

Visualize the topics using word clouds.
numTopics = mdl.NumTopics;

figure
tiledlayout (" flow")
title("LDA Topics")

for i = l:numTopics
nexttile
wordcloud(mdl,i);
title("Topic " + i)
end

2-35

2 Modeling and Prediction

2-36

Topic 1 Topic 2 Topic 3
S whine oS L
ENGET e ., momineanzuy conveyar ‘Pt B
assembler o, ‘St hne stuck | S R enhear of e
Ll . [l e uy g i Jar =Ty v i
Cre MUXEC scanner i ke SOUN raaing
i E,;';Lil":!'-:-l:*-'l ol T2 agent qaeia '::.:.' a;if‘i'“[m!.[.')
i s overheat . Somealimag wem comatuct NSiE ne
i Tansport e =g L
Topic 4 Topic 5 Topic 6
'||..1' il - semey 'I.- L
=N bher -l] sarter
An-t 3¢ <1} 1n SO R =tarfup
2 I:. — ..\.I.-{ o oy y o 1R M rr‘:‘!hf‘::l.t:.éq
e SCANNER = e IMIXET i mtag AP
cdlact ADDEAr begin = rLlf.:ﬁ p=ry
a - g i
band product cosmidar DDA ™
agsemblared controlks
Topic 7
riferiace
mx fragze product
i .I' .-:'-;-_--.-.:-::'
software
= SOrer asemt
b Tl
connec
Programiming

Visualize Document Clusters Using t-SNE

The t-distributed stochastic neighbor embedding (t-SNE) algorithm projects high-dimensional vectors
to 2-D space. This embedding makes it easy to visualize similarity between high-dimensional vectors.
By plotting the document topic mixtures according to the t-SNE algorithm, you can visualize the
clustering of similar documents.

Project the topic mixtures in the DocumentTopicProbabilties property into 2-D space using the
tsne function.

XY = tsne(mdl.DocumentTopicProbabilities);
For the plot groups, identify the top topic for each document.
[~,topTopics] = max(mdl.DocumentTopicProbabilities,[],2);
For the plot labels, find the top three words for each topic.
for i = l:numTopics

top = topkwords(mdl,3,1);

topWords(i) = join(top.Word,", ");
end

Plot the projected topic mixtures using the gscatter function. Specify the top topics as the grouping
variable and display a legend with the top words for each topic.

figure
gscatter(XY(:,1),XY(:,2),topTopics)

Visualize Document Clusters Using LDA Model

title("Topic Mixtures")
legend(topWords,

Location="southoutside",
NumColumns=2)

Topic Mixtures

:]-D T T T T T T T T T
‘8
& -
20 . v . i
& r | .' . .
M‘ - F - -l'
b] -
10 1 e
D - -
»
-
- '.'I'
A0 F i
.
—2D i i i i i i i i i
-20 -15 -10 -5 0 5 10 15 20 25
* mixer, sound, assembler * mixer, fuse, coolant
scanner, agent, stuck ® arm, robot, smoke
sound, agent, hear * software, sorter, controller
scanner, appear, spool

The t-SNE plot highlights clusters occurring in the original high-dimensional data.

See Also
tokenizedDocument | fitlda | ldaModel | wordcloud

Related Examples

. “Analyze Text Data Using Topic Models” on page 2-13

. “Visualize LDA Topic Correlations” on page 2-38

. “Visualize Correlations Between LDA Topics and Document Labels” on page 2-42

2-37

2 Modeling and Prediction

Visualize LDA Topic Correlations

2-38

This example shows how to analyze correlations between topics in a Latent Dirichlet Allocation (LDA)
topic model.

A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers word probabilities in topics. The vectors of per-topic word
probabilities characterize the topics. Using the per-topic word probabilities, you can identify
correlations between the topics.

Load LDA Model

Load the LDA model factoryReportsLDAModel which is trained using a data set of factory reports
detailing different failure events. For an example showing how to fit an LDA model to a collection of
text data, see “Analyze Text Data Using Topic Models” on page 2-13.

load factoryReportsLDAModel
mdl

mdl =
ldaModel with properties:

NumTopics: 7
WordConcentration: 1
TopicConcentration: 0.5755
CorpusTopicProbabilities: [0.1587 0.1573 0.1551 0.1534 0.1340 ...]
DocumentTopicProbabilities: [480x7 double]
TopicWordProbabilities: [158x7 double]
Vocabulary: ["item" "occasionally" "get" C]
TopicOrder: 'initial-fit-probability'
FitInfo: [1x1 struct]

Visualize the topics using word clouds.
numTopics = mdl.NumTopics;

figure
t = tiledlayout("flow");
title(t,"LDA Topics")

for i = l:numTopics
nexttile
wordcloud(mdl,i);
title("Topic " + i)
end

Visualize LDA Topic Correlations

LDA Topics
Topic 1 Topic 2
-Z’II'FEIF.'J:-’..I:I‘l
o - s
“assemb |EI __“ff _a_
~ s mixer s "Scanner .
L ,, . EEL”'IEl r'.?. rarsp c-r agent |am
« oyerheat - i _sometimes
Topic 4 Topic 5
assembler o conirollerssnstan
ned - bR begin mipe lagh “oosmber
suck sce ’i{[‘l[‘ll:jl H -« MiXer .o .
:'ééﬂ 2 low fuse =

" blender S3Sembly

sl o casionally

Topic 7

e S ot
[t controller crask
software .o
s 9 'rt-urco remct

o
o -:I-:-si a7 " gpamming

Visualize Topic Correlations

Topic 3
rittirg
-:::-'re,tr E’,ﬂhﬁajr--
g hear ff .
ot SOUNG hake
:1'.; agent rame
ConEinuct I"|5H:|E .

ST

Topic &
Pl = sater
e supply - SO
= smoke n:-:__:
= st AT P

s,a M Dth 'Laa

2azen ler |,..,.-.-EI

Calculate the correlations between the topics using the corrcoef function with the LDA model topic

word probabilities as input.

correlation = corrcoef(mdl.TopicWordProbabilities);

View the correlations in a heat map and label each topic with its top three words. To prevent the heat
map from highlighting the trivial correlations between topics each and itself, subtract the identity

matrix from the correlations.

For each topic, find the top three words.

numTopics = mdl.NumTopics;
for i = l:numTopics
top = topkwords(mdl,3,1i);
topWords(i) = join(top.Word,", ");
end

Plot the correlations using the heatmap function.

figure

heatmap(correlation - eye(numTopics),
XDisplaylLabels=topWords,
YDisplaylLabels=topWords)

title("LDA Topic Correlations")

2-39

2 Modeling and Prediction

2-40

xLlabel("Topic")
ylabel("Topic")

mixer, sound, assembler

Topic

scanner, agent, stuck

sound, agent, hear

scanner, appear, spool

mixer, fuse, coolant

arm, robot, smoke

software, sorter, controller

'if’
ob

s

R
o et
‘1‘3{‘5 a‘iﬂ({‘ ao\f‘h

LDA Topic Correlations

0004212 | -0.09533
-4 01037
02591 0112 01272
-00Fasd | -005432
-002077 | -005733
Q008212 -01114 -2 -0.07asd a -0.0512
-0U08693 -0.1037 01272 -0.05430 -0.05012 a
5 <
& &
o & o e
'a-‘?ie 5. ©
e L
' {\E“na .,i‘_e.i-.m W" :Jdﬁ'
5{:3’9 o " e
Ea
Topic

0.3

025

02

015

01

1005

1-0.05

1-0.1

For each topic, find the topic with the strongest correlation and display the pairs in a table with the
corresponding correlation coefficient.

[topCorrelations,topCorrelatedTopics]

tbl =

table;

tbl.TopicIndex = (1l:numTopics)';

tbl.Topic =
tbl.TopCorrelatedTopicIndex = topCorrelatedTopics';

topWords';

tbl.TopCorrelatedTopic =

= max(correlation - eye(numTopics));

topWords(topCorrelatedTopics)';

tbl.CorrelationCoefficient = topCorrelations'
tbl=7x5 table
TopicIndex Topic TopCorrelatedTopicIndex TopCorrelat
1 "mixer, sound, assembler" 5 "mixer, fuse, coo
2 "scanner, agent, stuck" 4 “scanner, appear,
3 "sound, agent, hear" 1 "mixer, sound, as!
4 "scanner, appear, spool" 2 “scanner, agent,
5 "mixer, fuse, coolant" 1 "mixer, sound, as!
6 "arm, robot, smoke" 1 "mixer, sound, as!

Visualize LDA Topic Correlations

7 "software, sorter, controller" 7 "software, sorter

See Also
tokenizedDocument | fitlda | ldaModel | wordcloud

Related Examples

. “Analyze Text Data Using Topic Models” on page 2-13
. “Visualize Document Clusters Using LDA Model” on page 2-35
. “Visualize Correlations Between LDA Topics and Document Labels” on page 2-42

2-41

2 Modeling and Prediction

Visualize Correlations Between LDA Topics and Document
Labels

This example shows how to fit a Latent Dirichlet Allocation (LDA) topic model and visualize
correlations between the LDA topics and document labels.

A Latent Dirichlet Allocation (LDA) model is a topic model which discovers underlying topics in a
collection of documents and infers the word probabilities in topics. Fitting an LDA model does not
require labeled data. However, you can visualize correlations between the fitted LDA topics and the
document labels using a parallel coordinates plot.

This example fits an LDA model to the Factory Reports data set which is a collection of factory
reports detailing different failure events and identifies correlations between the LDA topics and the
report category.

Load and Extract Text Data

Load the example data. The file factoryReports. csv contains factory reports, including a text
description and categorical labels for each event.

data = readtable("factoryReports.csv",TextType="string");

head(data)
ans=8x5 table
Description Category

"Items are occasionally getting stuck in the scanner spools." "Mechanical Failure
"Loud rattling and banging sounds are coming from assembler pistons." "Mechanical Failure
"There are cuts to the power when starting the plant." "Electronic Failure
"Fried capacitors in the assembler." "Electronic Failure
"Mixer tripped the fuses." "Electronic Failure
"Burst pipe in the constructing agent is spraying coolant." "Leak"
"A fuse is blown in the mixer." "Electronic Failure
"Things continue to tumble off of the belt." "Mechanical Failure

Extract the text data from the field Description.

textData = data.Description;
textData(1:10)

ans = 10x1 string
"Items are occasionally getting stuck in the scanner spools."
"Loud rattling and banging sounds are coming from assembler pistons."
"There are cuts to the power when starting the plant."
"Fried capacitors in the assembler."
"Mixer tripped the fuses."
"Burst pipe in the constructing agent is spraying coolant."
"A fuse is blown in the mixer."
"Things continue to tumble off of the belt."
"Falling items from the conveyor belt."
"The scanner reel is split, it will soon begin to curve."

Extract the labels from the field Category.

2-42

Visualize Correlations Between LDA Topics and Document Labels

labels = data.Category;
Prepare Text Data for Analysis

Create a function which tokenizes and preprocesses the text data so it can be used for analysis. The
function preprocessText, listed in the Preprocessing Function on page 2-46 section of the
example, performs the following steps in order:

Tokenize the text using tokenizedDocument.

Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.

Remove words with 2 or fewer characters using removeShortWords.

o U1 A W N M

Remove words with 15 or more characters using removelLongWords.

Prepare the text data for analysis using the preprocessText function.

documents = preprocessText(textData);
documents(1:5)

ans 5x1 tokenizedDocument array with properties:

tokens: item occasionally get stuck scanner spool
tokens: loud rattling bang sound come assembler piston
tokens: cut power start plant

tokens: fry capacitor assembler

tokens: mixer trip fuse

wWwhJol

Create a bag-of-words model from the tokenized documents.
bag = bag0OfWords(documents)

bag = bagOfWords with properties:
Counts: [480x338 double]
Vocabulary: [1x338 string]
NumWords: 338
NumDocuments: 480

Remove words from the bag-of-words model that have do not appear more than two times in total.
Remove any documents containing no words from the bag-of-words model.

bag = removelInfrequentWords(bag,?2);
bag = removeEmptyDocuments(bag)
bag = bagOfWords with properties:
Counts: [480x158 doublel]
Vocabulary: [1x158 string]
NumWords: 158
NumDocuments: 480
Fit LDA Model

Fit an LDA model with 7 topics. For an example showing how to choose the number of topics, see
“Choose Number of Topics for LDA Model” on page 2-19. To suppress verbose output, set the
Verbose option to 0. For reproducibility, set rng to "default".

2-43

2 Modeling and Prediction

2-44

rng("default")
numTopics = 7;
mdl = fitlda(bag,numTopics,Verbose=0);

If you have a large dataset, then the stochastic approximate variational Bayes solver is usually better
suited as it can fit a good model in fewer passes of the data. The default solver for fitlda (collapsed
Gibbs sampling) can be more accurate at the cost of taking longer to run. To use stochastic
approximate variational Bayes, set the Solver option to "savb". For an example showing how to
compare LDA solvers, see “Compare LDA Solvers” on page 2-23.

Visualize the topics using word clouds.

figure
t = tiledlayout("flow");
title(t,"LDA Topics")

for i = l:numTopics
nexttile
wordcloud(mdl,1i);
title("Topic " + i)
end

LDA Topics
Topic 1 Topic 2 Topic 3
CONSucan miimg e ke
S . - e I oTTeyE ny
, BSSEMDIBT e stuck fima’) Y
e MIEED 7 T e SCANNET i patt SOUNG e 2
s S0UNO=ane woncter jam SENT maseria b g SOENT ramk
mud Ovarhaat mansport gometimes carstpe insida ™
! un gl 20 ' e
Topic 4 Topic 5 Topic 6
aasembier ety T ——
prochect wirarm S]
[spool ¢ -J:::::Iz:; , s TO0 ="r:'|' s o I--]k.-.'“ ign
L Ry ; Ao " AFFr Eart
roler SCAMNT DF_I.,P wemder [TIXET 1 arrm e
band AppEar ce= KO £ e SO ke

o b wt

Topic 7

Inficriiance

Visualize Correlations Between Topics and Document Labels

L=F L8 oo ker
bur - 8

POAET

Visualize the correlations between the LDA topics and the document labels by plotting the mean topic
probabilities against each document label.

Visualize Correlations Between LDA Topics and Document Labels

Extract the document topic mixtures from the DocumentTopicProbabilities property of the LDA
model.

topicMixtures = mdl.DocumentTopicProbabilities;

For the documents with each label, calculate the mean topic probabilities.

[groups,groupNames] = findgroups(labels);
numGroups = numel(groupNames);

for i = 1:numGroups

idx = groups == 1i;

meanTopicProbabilities(i,:) = mean(topicMixtures(idx,:));
end

For each topic, find the top three words.

numTopics = mdl.NumTopics;
for i = l:numTopics
top = topkwords(mdl,3,1i);
topWords(i) = join(top.Word,", ");
end

Plot the per-category mean topic probabilities using a parallel coordinates plot. For readability, create
a figure and increase the figure width using the Position property.

f = figure;
f.Position(3) = 2*f.Position(3);

Plot the per-category mean topic probabilities using the parallelplot function. Do not normalize
the input data and specify the categories as the groups. Set the coordinate tick labels to the top three
words of each topic.

p = parallelplot(meanTopicProbabilities,
GroupData=groupNames,
DataNormalization="none");

p.CoordinateTickLabels = topWords;

xlabel("LDA Topic")

ylabel("Mean Topic Probability")
title("LDA Topic and Document Label Correlations")

2-45

2 Modeling and Prediction

LDA Topic and Document Label Correlations

y — Electronic Failure
0.7 0.7 - 0.7 0.7 o7 -o7 /o7 Leak
Mechanical Failure

= 06— 0.6 06— 0.6 - 0.6 - 0.6 - 0.6 — Software Failure
=
5 05 0.5 - 05 0.5 - 05 -o0s5 Fos
£
P 0.4 0.4 0.4 0.4 - 04 o4 - 0.4
2
= 0.3 0.3 0.3 0.3 o3 o3
L 02 0.2 o 0.2 0.2 o Fo2— Foz2

0.1] 01 01 ——_ 017/ _— " o1 01 >~ ot

0 0 0 0 Fo Fo Fo
3 o 2 3 & e &
& A & o * o & o s = 0“\(0“
o * o o *® &7 <_‘\0r’e @ ot o
.20 & 0 £ S 2° &© ®
& e = cp\\\l*
LDA Topic

The parallel plot highlights the correlations between the LDA topics and the document labels. High
peaks indicate a strong correlation between the corresponding topic and document label.

Preprocessing Function
The function preprocessText, performs the following steps in order:

Tokenize the text using tokenizedDocument.

Lemmatize the words using normalizeWords.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

A U A W N R

Remove words with 15 or more characters using removelLongWords.
function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument (textData);

% Lemmatize the words.
documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents, 'Style', 'lemma');

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents = removeShortWords(documents,2);

documents = removelLongWords(documents,15);

2-46

Visualize Correlations Between LDA Topics and Document Labels

end

See Also
tokenizedDocument | fitlda | ldaModel | wordcloud

Related Examples

. “Analyze Text Data Using Topic Models” on page 2-13
. “Visualize Document Clusters Using LDA Model” on page 2-35
. “Visualize LDA Topic Correlations” on page 2-38

2-47

2 Modeling and Prediction

Create Co-occurrence Network

2-48

This example shows how to create a co-occurrence network using a bag-of-words model.

Given a corpus of documents, a co-occurrence network is an undirected graph, with nodes
corresponding to unique words in a vocabulary and edges corresponding to the frequency of words
co-occurring in a document. Use co-occurrence networks to visualize and extract information of the
relationships between words in a corpus of documents. For example, you can use a co-occurrence
network to discover which words commonly appear with a specified word.

Import Text Data

Extract the text data in the file weekendUpdates.x1lsx using readtable. The file
weekendUpdates.x1lsx contains status updates containing the hashtags "#weekend" and
"#vacation". Read the data using the readtable function and extract the text data from the
TextData column.

filename = "weekendUpdates.xlsx";
tbl = readtable(filename, 'TextType', 'string');
textData = tbl.TextData;

View the first few observations.
textData(1l:5)

ans = 5x1 string
"Happy anniversary! « Next stop: Paris! » #vacation"
"Haha, BBQ on the beach, engage smug mode! [JJJde [J#vacation"
"getting ready for Saturday night [J0#yum #weekend [J[]
"Say it with me - I NEED A #VACATION!!! "
"00Chilling JJat home for the first time in ages..This is the life! [JJ#weekend"

Preprocess Text Data
Tokenize the text, convert it to lowercase, and remove the stop words.
documents = tokenizedDocument(textData);

documents
documents

= lower(documents);
= removeStopWords (documents);

Create a matrix of word counts using a bag-of-words model.

bag = bag0fWords(documents);
counts = bag.Counts;

To compute the word co-occurrences, multiply the word-count matrix by its transpose.
cooccurrence = counts. '*counts;

Convert the co-occurrence matrix to a network using the graph function.

G = graph(cooccurrence,bag.Vocabulary, 'omitselfloops');

Visualize the network using the plot function. Set the line thickness to a multiple of the edge weight.

Create Co-occurrence Network

LWidths = 5*G.Edges.Weight/max(G.Edges.Weight);

plot (G, 'LineWidth',LWidths)
title("Co-occurence Network")

Co-occurence Network

Find neighbors of the word "great" using the neighbors function.
word = "great"

word =
"great"”

idx = find(bag.Vocabulary == word);
nbrs = neighbors(G,idx);
bag.Vocabulary(nbrs)'

ans = 18x1 string
"next"
"#vacation"
"0
"#weekend"
ngu
"excited"
"flight"
"delayed"
"stuck"
"airport"
"way"

2-49

2 Modeling and Prediction

“Spend"

IIDU
"lovely"
"friends"

Ilminill
"everybody"

Visualize the co-occurrences of the word "great" by extracting a subgraph of this word and its
neighbors.

H = subgraph(G, [idx; nbrs]);
LWidths = 5*H.Edges.Weight/max(H.Edges.Weight);

plot(H, 'LineWidth',LWidths)
title("Co-occurence Network - Word: """ 4+ word + """");

Co-occurence Network - Word: "great”

LN
B girport
% everybody | - — B delayed
& ctlck A
T~ _:_ ® spend
a1t
¥ #veckend) iy ot t
s i, / *way
. #vacation
®lovety Sni “L,
e
® friends
W excitad— ® next

For more information about graphs and network analysis, see “Graph and Network Algorithms”.

See Also
tokenizedDocument | bag0fWords | removeStopWords | graph

Related Examples
. “Analyze Text Data Using Topic Models” on page 2-13

2-50

Create Co-occurrence Network

“Analyze Text Data Using Multiword Phrases” on page 2-7
“Analyze Text Data Containing Emojis” on page 2-52

2-51

2 Modeling and Prediction

Analyze Text Data Containing Emojis

2-52

This example shows how to analyze text data containing emojis.

Emojis are pictorial symbols that appear inline in text. When writing text on mobile devices such as
smartphones and tablets, people use emojis to keep the text short and convey emotion and feelings.

You also can use emojis to analyze text data. For example, use them to identify relevant strings of text
or to visualize the sentiment or emotion of the text.

When working with text data, emojis can behave unpredictably. Depending on your system fonts, your
system might not display some emojis correctly. Therefore, if an emoji is not displayed correctly, then
the data is not necessarily missing. Your system might be unable to display the emoji in the current
font.

Composing Emojis

In most cases, you can read emojis from a file (for example, by using extractFileText,
extractHTMLText, or readtable) or by copying and pasting them directly into MATLAB®.
Otherwise, you must compose the emoji using Unicode UTF16 code units.

Some emojis consist of multiple Unicode UTF16 code units. For example, the "smiling face with
sunglasses" emoji (Jvith code point U+1F60E) is a single glyph but comprises two UTF16 code units
"D83D" and "DEOE". Create a string containing this emoji using the compose function, and specify
the two code units with the prefix "\x".

emoji = compose("\xD83D\xDEOE")

emoji

"0f

First get the Unicode UTF16 code units of an emoji. Use char to get the numeric representation of
the emoji, and then use dec2hex to get the corresponding hex value.

codeUnits = dec2hex(char(emoji))
codeUnits = 2x4 char array

'D83D'
'DEOE'

Reconstruct the composition string using the strjoin function with the empty delimiter "".

formatSpec = strjoin("\x" + codeUnits,"")

formatSpec =
"\xD83D\xDEOE"

compose(formatSpec)

emoji

emoji

"0f

Analyze Text Data Containing Emojis

Import Text Data

Extract the text data in the file weekendUpdates.x1lsx using readtable. The file
weekendUpdates.xlsx contains status updates containing the hashtags "#weekend" and
"#vacation".

filename = "weekendUpdates.xlsx";
tbl = readtable(filename, 'TextType', 'string');
head(tbl)
ans=8x2 table
ID TextData
1 "Happy anniversary! « Next stop: Paris! » #vacation"
2 "Haha, BBQ on the beach, engage smug mode! [0« [#vacation"
3 "getting ready for Saturday night [0#yum #weekend [
4 "Say it with me - I NEED A #VACATION!!! &"
5 "00Chilling Jdat home for the first time in ages..This is the life! [JJ#weekend"
6 "My last #weekend before the exam [JO0H"
7 "can't believe my #vacation is over [Jso unfair"
8 "Can’'t wait for tennis this #weekend [O0000M

Extract the text data from the field TextData and view the first few status updates.

textData = tbl.TextData;
textData(1l:5)

ans = 5x1 string
"Happy anniversary! e Next stop: Paris! » #vacation"
"Haha, BBQ on the beach, engage smug mode! [0« [J#vacation"
"getting ready for Saturday night [0#yum #weekend [
"Say it with me - I NEED A #VACATION!!! &"
"00Chilling gJat home for the first time in ages..This is the life! [J#weekend"

Visualize the text data in a word cloud.

figure
wordcloud(textData);

2-53

2 Modeling and Prediction

surpri.se beach —
Pavacadmaast DMG Fll ght J ust ypum

weekend @*"' d need Great Next

Saturday

Haak e | -

- 4y ® Bawght 1
week @ XQ - @ Kwalt*l
b -_L M eeping “ Laxakirg
ever @ . Ii Mchampagne

Tota

Haha gy AWFLL Mcreesum mear Soris

weather - x, Y stuck WO rk #iraimightmare
et BiNG . love
Rmmantlc life ™ ®& . SUN Beers excited
#va Catl
Tresd gmnna Me¥ey

Waa.haa

Gkt ,| T——
loaland eSt . gOIng o
o e O I|_l_r s
Haweaty o
sy getling, end k now
-&':I hoeatwave Wanching
. Mraading

vy

Filter Text Data by Emoji

Identify the status updates containing a particular emoji using the contains function. Find the
indices of the documents containing the "smiling face with sunglasses" emoji (Jvith code U+1F60E).
This emoji comprises the two Unicode UTF16 code units "D83D" and "DEOE".

emoji = compose("\xD83D\xDEOE");
idx = contains(textData,emoji);
textDataSunglasses = textData(idx);
textDataSunglasses(1:5)

ans = 5x1 string
"Haha, BBQ on the beach, engage smug mode! [0« [#vacation"
"getting ready for Saturday night [0#yum #weekend [
"00Chilling Odat home for the first time in ages..This is the life! [JJ#weekend"
"00Check the out-of-office crew, we are officially ON #VACATION!! M
"Who needs a #vacation when the weather is this good * [

Visualize the extracted text data in a word cloud.

figure
wordcloud(textDataSunglasses);

2-54

Analyze Text Data Containing Emojis

g

wbas =mg way
_— fruf . U
e e 0 worked ..,
mada . e
Mackid L ST e
oo arifice e y

» e E"H"EI' Chiling * Checy, =W 'L:L:Ld
) beach best know

] #yum My , e -
& Ends J St Bora ﬁ. 5 Bk + o ,
. 0] . H gaad

kg IIfE Hleree surmmear Fa gEttlng cblacially

== “ " el
egage g Beers # wait needs

~ #weekend”

garden Haha CSMmMs g
hame
Jp— " p—]
e e

Extract and Visualize Emojis
Visualize all the emojis in text data using a word cloud.

Extract the emojis. First tokenize the text using tokenizedDocument, and then view the first few
documents.

documents = tokenizedDocument (textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

11 tokens: Happy anniversary ! « Next stop : Paris ! » #vacation

16 tokens: Haha , BBQ on the beach , engage smug mode ! 000 O0#vacation

9 tokens: getting ready for Saturday night [#yum #weekend [

13 tokens: Say it with me - I NEED A #VACATION ! ' ! @

19 tokens: [OChilling [0Jat home for the first time in ages .. This is the life ! [JJ#weekend

The tokenizedDocument function automatically detects emoji and assigns the token type "emoji".
View the first few token details of the documents using the tokenDetails function.

tdetails = tokenDetails(documents);
head(tdetails)

ans=8x5 table
Token DocumentNumber LineNumber Type Language

2-55

2 Modeling and Prediction

"Happy" 1 1 letters en
"anniversary" 1 1 letters en
e 1 1 punctuation en
"o 1 1 emoji en
“Next" 1 1 letters en
“stop" 1 1 letters en
e 1 1 punctuation en
"Paris" 1 1 letters en

Visualize the emojis in a word cloud by extracting the tokens with token type "emoji" and inputting
them into the wordcloud function.

idx = tdetails.Type == "emoji";
tokens = tdetails.Token(idx);
figure

wordcloud(tokens);
title("Emojis")

Emojis

.'!‘.
(I
&2

See Also
wordcloud | tokenizedDocument | tokenDetails

2-56

Analyze Text Data Containing Emojis

Related Examples

. “Analyze Text Data Using Topic Models” on page 2-13
. “Analyze Text Data Using Multiword Phrases” on page 2-7

. “Train a Sentiment Classifier” on page 2-71
. “Classify Text Data Using Deep Learning” on page 2-90
. “Generate Text Using Deep Learning” (Deep Learning Toolbox)

2-57

2 Modeling and Prediction

Analyze Sentiment in Text

2-58

This example shows how to use the Valence Aware Dictionary and sEntiment Reasoner (VADER)
algorithm for sentiment analysis.

The VADER algorithm uses a list of annotated words (the sentiment lexicon), where each word has a
corresponding sentiment score. The VADER algorithm also utilizes word lists that modify the scores
of proceeding words in the text:

* Boosters - words or n-grams that boost the sentiment of proceeding tokens. For example, words
like "absolutely" and "amazingly".

* Dampeners - words or n-grams that dampen the sentiment of proceeding tokens. For example,
words like "hardly" and "somewhat".

* Negations - words that negate the sentiment of proceeding tokens. For example, words like "not"
and "isn't".
To evaluate sentiment in text, use the vaderSentimentScores function.

Load Data

Extract the text data in the file weekendUpdates.x1sx using readtable. The file
weekendUpdates.x1lsx contains status updates containing the hashtags "#weekend" and
"#vacation".

filename = "weekendUpdates.xlsx";
tbl = readtable(filename, 'TextType', 'string');
head (tbl)

ID TextData

"Happy anniversary! « Next stop: Paris! » #vacation"

"Haha, BBQ on the beach, engage smug mode! [0 [J#vacation"

"getting ready for Saturday night [J0#yum #weekend [

"Say it with me - I NEED A #VACATION!!! &"

"00Chilling JJat home for the first time in ages..This is the life! [JJ#weekend"
"My last #weekend before the exam [O0H"

"can't believe my #vacation is over [Jso unfair"

"Can't wait for tennis this #weekend [JO000OM

oOoNOUTEA WN B

Create an array of tokenized documents from the text data and view the first few documents.

str = tbl.TextData;
documents = tokenizedDocument(str);
documents(1:5)

ans =
5x1 tokenizedDocument:

11 tokens: Happy anniversary ! « Next stop : Paris ! » #vacation

16 tokens: Haha , BBQ on the beach , engage smug mode ! 000 OO#vacation

9 tokens: getting ready for Saturday night [JJ#yum #weekend [

13 tokens: Say it with me - I NEED A #VACATION ! ! ! @

19 tokens: [0Chilling [Jat home for the first time in ages .. This is the life ! [J#weekend

Analyze Sentiment in Text

Evaluate Sentiment

Evaluate the sentiment of the tokenized documents using the vaderSentimentLexicon function.
Scores close to 1 indicate positive sentiment, scores close to -1 indicate negative sentiment, and
scores close to 0 indicate neutral sentiment.

compoundScores = vaderSentimentScores(documents);
View the scores of the first few documents.
compoundScores(1:5)

ans = 5x1

.4738
.9348
.6705
.5067
.7345

1
loNoNoNoNO]

Visualize the text with positive and negative sentiment in word clouds.

idx = compoundScores > 0;
strPositive = str(idx);
strNegative = str(~idx);

figure

subplot(1,2,1)
wordcloud(strPositive);
title("Positive Sentiment")

subplot(1,2,2)

wordcloud(strNegative);
title("Negative Sentiment")

2-59

2 Modeling and Prediction

Positive Sentiment Negative Sentiment

T () work

Pt

bach 7y Wesping
know (% @ ﬁb

#vacation #vac§=ELon
#weekend #W&?e kend

Just)
over™® need-f7 3
@ wait U
o wal W

best ' Goinlg

Meees Sk
ol

See Also
vaderSentimentScores | ratioSentimentScores | tokenizedDocument

More About
. “Generate Domain Specific Sentiment Lexicon” on page 2-61
. “Train a Sentiment Classifier” on page 2-71

. “Prepare Text Data for Analysis” on page 1-11

. “Analyze Text Data Containing Emojis” on page 2-52

. “Create Simple Text Model for Classification” on page 2-2
. “Analyze Text Data Using Topic Models” on page 2-13

. “Analyze Text Data Using Multiword Phrases” on page 2-7

2-60

Generate Domain Specific Sentiment Lexicon

Generate Domain Specific Sentiment Lexicon

This example shows how to generate a lexicon for sentiment analysis using 10-K and 10-Q financial

reports.

Sentiment analysis allows you to automatically summarize the sentiment in a given piece of text. For
example, assign the pieces of text "This company is showing strong growth." and "This other company
is accused of misleading consumers." with positive and negative sentiment, respectively. Also, for
example, to assign the text "This company is showing extremely strong growth." a stronger sentiment
score than the text "This company is showing strong growth."

Sentiment analysis algorithms such as VADER rely on annotated lists of words called sentiment
lexicons. For example, VADER uses a sentiment lexicon with words annotated with a sentiment score
ranging from -1 to 1, where scores close to 1 indicate strong positive sentiment, scores close to -1
indicate strong negative sentiment, and scores close to zero indicate neutral sentiment.

To analyze the sentiment of text using the VADER algorithm, use the vaderSentimentScores
function. If the sentiment lexicon used by the vaderSentimentScores function does not suit the
data you are analyzing, for example, if you have a domain-specific data set like medical or
engineering data, then you can generate your own custom sentiment lexicon using a small set of seed

words.

This example shows how to generate a sentiment lexicon given a collection of seed words using a

graph-based approach based on [1 on page 2-70]:

* Train a word embedding that models the similarity between words using the training data.

* Create a simplified graph representing the embedding with nodes corresponding to words and

edges weighted by similarity.

» To determine words with strong polarity, identify the words connected to multiple seed words
through short but heavily weighted paths.

Positive
Seeds

achieve

advantage
better

creative
efficiency
efficiently
enhance

greater

Negative
Seeds

adverse
adversely

against
complaint

concern
damages

default

deficiencies

Generate

—>

Positive Words

oplimized

capabilities
affic ency Droader

expanding awarensss

ICUSING o

¥ oCUSes enhance
enhancmg ratogy

. targetinghee

eXCeHent ||rq|[|1r;|r\.r=
=y mnovative
growmg goal

actively
A‘.Hr e moedermn grow
‘innovation
in || atives C'arny nﬂn"rp
°®# innovations -
packages S‘rateglc
creative ™
strategically
leveraging
rproved

Negative Words

|
breached
itigetions I|t|gal|nn

dbef|t:|en4:|es -
- :

€5 affect miFpkain

gete bt‘: II’WONES maleria |I'_:\-
b reaches fraud against
damag@% claims

bre
adversely
symmarize -

alleges del’end”’.”ﬁi. .

giefenda nt claim

855 dafects o e
defending uuﬂﬂb'”
defendants atomeys

plaintiff's alleged
equivalent
weaknesses

2-61

2 Modeling and Prediction

2-62

Load Data

Download the 10-K and 10-Q financial reports data from Securities and Exchange Commission (SEC)
via the Electronic Data Gathering, Analysis, and Retrieval (EDGAR) API [2 on page 2-70] using the
financeReports helper function attached to this example as a supporting file. To access this file,
open this example as a Live Script. The financeReports function downloads 10-K and 10-Q reports
for the specified year, quarter, and maximum character length.

Download a set of 20,000 reports from the fourth quarter of 2019. Depending on the sizes of the
reports, this can take some time to run.

year = 2019;
qtr = 4;
textData = financeReports(year,qtr, 'MaxNumReports',20000);

Downloading 10-K and 10-Q reports...
Done.
Elapsed time is 1799.718710 seconds.

Define sets of positive and negative seed words to use with this data. The seed words must appear at
least once in the text data, otherwise they are ignored.

seedsPositive = ["achieve" "advantage" "better" "creative" "efficiency"
"efficiently" "enhance" "greater" "improved" "improving" .
"innovation" "innovations" "innovative" "opportunities" "profitable"
"profitably" "strength" "strengthen" "strong" "success"]';

seedsNegative = ["adverse" "adversely" "against" "complaint" "concern"
"damages" "default" "deficiencies" "disclosed" "failure"
“fraud" "impairment" "litigation" "losses" "misleading"
"omit" "restated" "restructuring" "termination" "weaknesses"]';

Prepare Text Data

Create a function names preprocessText that prepares the text data for analysis. The
preprocessText function, listed at the end of the example performs the following steps:
* FErase any URLs.

» Tokenize the text.

* Remove tokens containing digits.

* Convert the text to lower case.

* Remove any words with two or fewer characters.

* Remove any stop words.

Preprocess the text using the preprocessText function. Depending on the size of the text data, this
can take some time to run.

documents = preprocessText(textData);
Visualize the preprocessed text data in a word cloud.

figure
wordcloud(documents);

Generate Domain Specific Sentiment Lexicon

recognized \
st company s
following ng‘i‘;:?gsréstcom maon
°=*note debt shares
':.Er'.ILE'_-. current & " amounts agreement
sla'm-'ja_':is amount end ed t k autstanding
Z assets StOCK inciuding

based 't rT] balance ...
share EXpense p e e Fertam
to

statements pic tax related.. CaSh

expenses information operatin
Ieasecom pany i n.nf

fair -
enod S date |USS Lo I'EVEI"IU[_E
pthn:ee rggst i value million

“. incomefinancial total

~eudes Credit leases section e

rate months liabilities

accounting
_consol |dated b d ecermber

Dperations

Train Word Embedding

Word embeddings map words in a vocabulary to numeric vectors. These embeddings can capture
semantic details of the words so that similar words have similar vectors.

Train a word embedding that models the similarity between words using the training data. Specify a
context window of size 25 and discard words that appear fewer than 20 times. Depending on the size
of the text data, this can take some time to run.

emb = trainWordEmbedding(documents, 'Window',25, 'MinCount"',20);
Training: 100% Loss: 1.44806 Remaining time: 0 hours 0 minutes.

Create Word Graph

Create a simplified graph representing the embedding with nodes corresponding to words and edges
weighted by similarity.

Create a weighted graph with nodes corresponding to words in the vocabulary, edges denoting
whether the words are within a neighorhood of 7 of each other, and weights corresponding to the
cosine distance between the corresponding word vectors in the embedding.

For each word in the vocabulary, find the nearest 7 words and their cosine distances.

numNeighbors = 7;
vocabulary = emb.Vocabulary;
wordVectors = word2vec(emb,vocabulary);

2-63

2 Modeling and Prediction

2-64

[nearestWords,dist] = vec2word(emb,wordVectors,numNeighbors);

To create the graph, use the graph function and specify pairwise source and target nodes, and
specify their edge weights.

Define the source and target nodes.

sourceNodes
targetNodes

repelem(vocabulary,numNeighbors);
reshape(nearestWords,1,[]);

Calculate the edge weights.
edgeWeights = reshape(dist,1,[]);

Create a graph connecting each word with its neighors with edge weights corresponding to the
similarity scores.

wordGraph = graph(sourceNodes, targetNodes, edgeWeights,vocabulary);
Remove the repeated edges using the simplify function.

wordGraph = simplify(wordGraph);

Visualize the section of the word graph connected to the word "losses".

word = "losses";

idx = findnode(wordGraph,word);

nbrs = neighbors(wordGraph,idx);

wordSubgraph = subgraph(wordGraph, [idx; nbrs]);
figure

plot(wordSubgraph)

title("Words connected to """ + word + """")

Generate Domain Specific Sentiment Lexicon

Words connected to "losses™

* available-for-sale
#-held-to-maturity

& unmeatized ® gains

®lossas .
; # realized
& TECOVETIES

& allowance

intend

Generate Sentiment Scores

To determine words with strong polarity, identify the words connected to multiple seed words through
short but heavily weighted paths.

Initialize an array of sentiment scores corresponding to each word in the vocabulary.
sentimentScores = zeros([1 numel(vocabulary)l);
Iteratively traverse the graph and update the sentiment scores.

Traverse the graph at different depths. For each depth, calculate the positive and negative polarity of
the words by using the positive and negative seeds to propagate sentiment to the rest of the graph.

For each depth:

* Calculate the positive and negative polarity scores.
* Account for the difference in overall mass of positive and negative flow in the graph.
* For each node-word, normalize the difference of its two scores.

After running the algorithm, if a phrase has a higher positive than negative polarity score, then its
final polarity will be positive, and negative otherwise.

Specify a maximum path length of 4.

maxPathLength = 4;

2-65

2 Modeling and Prediction

2-66

Iteratively traverse the graph and calculate the sum of the sentiment scores.
for depth = l:maxPathLength

% Calculate polarity scores.
polarityPositive = polarityScores(seedsPositive,vocabulary,wordGraph,depth);
polarityNegative = polarityScores(seedsNegative,vocabulary,wordGraph,depth);

Account for difference in overall mass of positive and negative flow
in the graph.
= sum(polarityPositive) / sum(polarityNegative);

T o° o°

% Calculate new sentiment scores.
sentimentScoresNew = polarityPositive - b * polarityNegative;
sentimentScoresNew = normalize(sentimentScoresNew, 'range',[-1,1]1);

% Add scores to sum.
sentimentScores = sentimentScores + sentimentScoresNew;
end

Normalize the sentiment scores by the number of iterations.

sentimentScores = sentimentScores / maxPathLength;

Create a table containing the vocabulary and the corresponding sentiment scores.

tbl = table;
tbl.Token = vocabulary';
tbl.SentimentScore = sentimentScores';

To remove tokens with neutral sentiment from the lexicon, remove the tokens with sentiment score
that have absolute value less than a threshold of 0.1.

thr = 0.1;
idx = abs(tbl.SentimentScore) < thr;

tbl(idx,:) = [1;

Sort the table rows by descending sentiment score and view the first few rows.

tbl = sortrows(tbl, 'SentimentScore', 'descend');

head (tbl)
ans=8x2 table
Token SentimentScore

"opportunities" 0.95633
"innovative" 0.89635
"success" 0.84362
"focused" 0.83768
"strong" 0.81042
"capabilities" 0.79174
"innovation" 0.77698
"improved" 0.77176

You can use this table as a custom sentiment lexicon for the vaderSentimentScores function.

Generate Domain Specific Sentiment Lexicon

Visualize the sentiment lexicon in word clouds. Display tokens with a positive score in one word cloud
and tokens with negative scores in another. Display the words with sizes given by the absolute value

their corresponding sentiment score.

figure

subplot(1,2,1);

idx = tbl.SentimentScore > 0;
tblPositive = tbl(idx,:);

wordcloud(tblPositive, 'Token', 'SentimentScore')

title('Positive Words')

subplot(1,2,2);
idx = tbl.SentimentScore < 0;
tblNegative = tbl(idx,:);

tblNegative.SentimentScore = abs(tblNegative.SentimentScore);
wordcloud(tblNegative, 'Token', 'SentimentScore')

title('Negative Words')

Positive Words

anhancing

efficiency

g cusal ity
it sy ke

efﬂmenmes scale improve

shion_ increasad

mpmwngenfgg"rjjce

Highligh
-:x

" ez

capabmnes
e o refitability

help focused *herter

...||nl-.ll SuGCESEIlEEdan
creative

Dppoﬂunmes

Ernid =

grow innovative -

suendl strondagfieve

s innovation areater
o |mproued“”w=“="

advaniage
innovations -
profitable

=T beTE Ry L.
efficiently
laadarship

successfully

Export the table to a CSV file.

filename = "financeSentimentlLexicon.csv";

writetable(tbl, filename)

Analyze Sentiment in Text

Negative Words

arcumsianos

caams

termination
=i =] —
complaint

parfarming diSCIDSEd

reg?g?éd against aquivalant
. omit I|t|gat|0n

SUTTI marize

- dedecied

deficiencies

[=tal_sr. faly)

aftected AU Tenet
adversely i

adverse concern functions
== weaknesses
) damaQEE dasign
losses , Fiewal Frocess
T mlsleadlng —
restructuring o
|m|1a|!ﬁr”ure. , deficiency
pearsons

impairment

A0 e

To analyze the sentiment in for previously unseen text data, preprocess the text using the same
preprocessing steps and use the vaderSentimentScores function.

2-67

2 Modeling and Prediction

2-68

Create a string array containing the text data and preprocess it using the preprocessText function.

textDataNew = [
"This innovative company is continually showing strong growth."
"This other company is accused of misleading consumers."];
documentsNew = preprocessText (textDataNew);

Evaluate the sentiment using the vaderSentimentScores function. Specify the sentiment lexicon
created in this example using the 'SentimentLexicon' option.

compoundScores = vaderSentimentScores(documentsNew, 'SentimentLexicon',tbl)
compoundScores = 2x1

0.4360

-0.1112

Positive and negative scores indicate positive and negative sentiment, respectively. The magnitude of
the value corresponds to the strength of the sentiment.

Supporting Functions
Text Preprocessing Function
The preprocessText function performs the following steps:

* FErase any URLs.

* Tokenize the text.

* Remove tokens containing digits.

* Convert the text to lower case.

* Remove any words with two or fewer characters.
* Remove any stop words.

function documents = preprocessText(textData)

% Erase URLS.
textData = eraseURLs(textData);

% Tokenize.
documents = tokenizedDocument (textData);

% Remove tokens containing digits.
pat = textBoundary + wildcardPattern + digitsPattern + wildcardPattern + textBoundary;
documents = replace(documents,pat,"");

% Convert to lowercase.
documents = lower(documents);

% Remove short words.
documents = removeShortWords (documents,?2);

% Remove stop words.
documents = removeStopWords(documents);

end

Generate Domain Specific Sentiment Lexicon

Polarity Scores Function

The polarityScores function returns a vector of polarity scores given a set of seed words,
vocabulary, graph, and a specified depth. The function computes the sum over the maximum weighted
path from every seed word to each node in the vocabulary. A high polarity score indicates phrases
connected to multiple seed words via both short and strongly weighted paths.

The function performs the following steps:

Initialize the scores of the seeds with ones and otherwise zeros.

Loop over the seeds. For each seed, iteratively traverse the graph at different depth levels. For the
first iteration, set the search space to the immediate neighbors of the seed.

For each depth level, loop over the nodes in the search space and identify its neighbors in the
graph.

Loop over its neighbors and update the corresponding scores. The updated score is the maximum
value of the current score for the seed and neighbor, and the score for the seed and search node
weighted by the corresponding graph edge.

At the end of the search for the depth level, append the neighbors to the search space. This
increases the depth of the search for the next iteration.

The output polarity is the sum of the scores connected to the input seeds.

function polarity = polarityScores(seeds,vocabulary,wordGraph,depth)

% Remove seeds missing from vocabulary.
idx = ~ismember(seeds,vocabulary);
seeds(idx) = [];

% Initialize scores.

vocabularySize = numel(vocabulary);
scores = zeros(vocabularySize);

idx = ismember(vocabulary,seeds);
scores(idx,idx) = eye(numel(seeds));

% Loop over seeds.
for i = l:numel(seeds)

% Initialize search space.
seed = seeds(1i);

idxSeed = vocabulary == seed;
searchSpace = find(idxSeed);

% Search at different depths.
for d = 1l:depth

% Loop over nodes in search space.
numNodes = numel(searchSpace);

for k = 1:numNodes
idxNew = searchSpace(k);
% Find neighbors and weights.

nbrs = neighbors(wordGraph,idxNew) ;
idxWeights = findedge(wordGraph,idxNew,nbrs);

2-69

2 Modeling and Prediction

2-70

weights = wordGraph.Edges.Weight(idxWeights);

% Loop over neighbors.
for j = 1l:numel(nbrs)

% Calculate scores.
score = scores(idxSeed,nbrs(j));
scoreNew = scores(idxSeed, idxNew) ;

% Update score.
scores(idxSeed,nbrs(j)) = max(score,scoreNew*weights(j));
end

% Appended nodes to search space for next depth iteration.
searchSpace = [searchSpace nbrs'];
end
end
end

% Find seeds in vocabulary.
[~,1dx] = ismember(seeds,vocabulary);

% Sum scores connected to seeds.
polarity = sum(scores(idx,:));

end

Bibliography

1 Velikovich, Lenid. "The Viability of Web-derived Polarity Lexicons." In Proceedings of The Annual
Conference of the North American Chapter of the Association for Computational Linguistics,

2010, pp. 777-785. 2010.
2 Accessing EDGAR Data. https://www.sec.gov/os/accessing-edgar-data

See Also

https://www.sec.gov/os/accessing-edgar-data

Train a Sentiment Classifier

Train a Sentiment Classifier

This example shows how to train a classifier for sentiment analysis using an annotated list of positive
and negative sentiment words and a pretrained word embedding.

The pretrained word embedding plays several roles in this workflow. It converts words into numeric
vectors and forms the basis for a classifier. You can then use the classifier to predict the sentiment of
other words using their vector representation, and use these classifications to calculate the sentiment
of a piece of text. There are four steps in training and using the sentiment classifier:

* Load a pretrained word embedding.

* Load an opinion lexicon listing positive and negative words.

» Train a sentiment classifier using the word vectors of the positive and negative words.

* Calculate the mean sentiment scores of the words in a piece of text.

Load Pretrained Word Embedding

Word embeddings map words in a vocabulary to numeric vectors. These embeddings can capture
semantic details of the words so that similar words have similar vectors. They also model
relationships between words through vector arithmetic. For example, the relationship Rome is to
Paris as Italy is to France is described by the equation Rome — Italy + France = Paris.

Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;

Load Opinion Lexicon

Load the positive and negative words from the opinion lexicon (also known as a sentiment lexicon)
from https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html. [1] First, extract the files from
the . rar file into a folder named opinion-lexicon-English, and then import the text.

Load the data using the function readLexicon listed at the end of this example. The output data is
a table with variables Word containing the words, and Label containing a categorical sentiment
label, Positive or Negative.

data = readlLexicon;
View the first few words labeled as positive.

idx = data.Label == "Positive";
head(data(idx,:))

ans=8x2 table

Word Label
"a+" Positive
"abound" Positive
"abounds" Positive
"abundance" Positive
"abundant" Positive

2-71

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon

2 Modeling and Prediction

2-72

"accessable" Positive
"accessible" Positive
"acclaim" Positive

View the first few words labeled as negative.

idx = data.Label == "Negative";
head(data(idx,:))

ans=8x2 table

Word Label
"2-faced" Negative
"2-faces" Negative
"abnormal" Negative
"abolish" Negative
"abominable" Negative
"abominably" Negative
"abominate" Negative
"abomination" Negative

Prepare Data for Training

To train the sentiment classifier, convert the words to word vectors using the pretrained word
embedding emb. First remove the words that do not appear in the word embedding emb.

idx = ~isVocabularyWord(emb,data.Word);
data(idx,:) = [1;

Set aside 10% of the words at random for testing.

numWords = size(data,l);

cvp = cvpartition(numWords, 'HoldOut',0.1);
dataTrain = data(training(cvp),:);
dataTest = data(test(cvp),:);

Convert the words in the training data to word vectors using word2vec.
wordsTrain = dataTrain.Word;

XTrain word2vec (emb,wordsTrain) ;
YTrain dataTrain.Label;

Train Sentiment Classifier

Train a support vector machine (SVM) classifier which classifies word vectors into positive and
negative categories.

mdl = fitcsvm(XTrain,YTrain);
Test Classifier

Convert the words in the test data to word vectors using word2vec.

wordsTest = dataTest.Word;
XTest word2vec (emb,wordsTest);
YTest dataTest.Label;

Train a Sentiment Classifier

Predict the sentiment labels of the test word vectors.
[YPred,scores] = predict(mdl,XTest);
Visualize the classification accuracy in a confusion matrix.

figure
confusionchart(YTest,YPred);

Positive 189 15

True Class

Megative T

Positive Megative
Predicted Class

Visualize the classifications in word clouds. Plot the words with positive and negative sentiments in

word clouds with word sizes corresponding to the prediction scores.

figure

subplot(1,2,1)

idx = YPred == "Positive";
wordcloud(wordsTest(idx),scores(idx,1));
title("Predicted Positive Sentiment")

subplot(1,2,2)
wordcloud(wordsTest(~idx),scores(~idx,2));
title("Predicted Negative Sentiment")

2-73

2 Modeling and Prediction

Predicted Positive Sentiment Predicted Negative Sentiment
accomplishmants 1l
efficacious =mably ovarbaaring _
enthusiastic . indelicate ="
nexpensive gociable rcarsdeaiey - dispirited

app[emayve sansalassly I::rumple strasion

valuatle - Shem . beautiful Sy mptom i

anhenic reJu‘u"EﬂEllnng capivate infested dEbllltate ez

bothers cime harsh
b aly

““““‘wnndernus R brutish jnefficient e
applaudfnesl inbiased picketed judder Tpnsumn
smes imely il . UNCOOpPerative
parla-;,lh,r "-"EFSEINE sira MArESS p sorenass
-« affordable’ o e Undersized::
ety I|Ir!sp_|_rat|0nal B Mu.hcralmpmg e
»- compassionate ... STV wue =" . SS0SEE
_eficenthalthful “iBfneg ASPETSION v
.lﬁlumb&up elegant gegirtousry “erumplas bllttEH‘_l,.I’ aground Ir.'\- o
se=rmene L uplifting fantastic ccancs disobadiert
. rewarding , e - intimidation unsupporive
dora 0 warmhaartad dehumanize mminecs
topnotch sy “hemoani
stimuates facilitate cm-.ral?dly_,_,zgk
rejuvenated ba;;kbilin'g'

revolutianiza

Calculate Sentiment of Collections of Text

To calculate the sentiment of a piece of text, for example an update on social media, predict the
sentiment score of each word in the text and take the mean sentiment score.

filename = "weekendUpdates.xlsx";

tbl = readtable(filename, 'TextType', 'string');
textData = tbl.TextData;

textData(1:10)

ans = 10x1 string array
"Happy anniversary! « Next stop: Paris! » #vacation"
"Haha, BBQ on the beach, engage smug mode! [0« [J#vacation"
"getting ready for Saturday night [#yum #weekend [
"Say it with me - I NEED A #VACATION!!! &"
"00Chilling Odat home for the first time in ages..This is the life! [JJ#weekend"
"My last #weekend before the exam 01"
"can't believe my #vacation is over [JJso unfair"
"Can't wait for tennis this #weekend [JO00OM

"I had so much fun! J000BEst trip EVER! [J000®Macation #weekend"
"Hot weather and air con broke in car [J#sweaty #roadtrip #vacation"

Create a function which tokenizes and preprocesses the text data so it can be used for analysis. The
function preprocessText, listed at the end of the example, performs the following steps in order:

1 Tokenize the text using tokenizedDocument.

2-74

Train a Sentiment Classifier

2 FErase punctuation using erasePunctuation.
3 Remove stop words (such as "and", "of", and "the") using removeStopWords.
4 Convert to lowercase using Lower.

Use the preprocessing function preprocessText to prepare the text data. This step can take a few
minutes to run.

documents = preprocessText(textData);

Remove the words from the documents that do not appear in the word embedding emb.

idx = ~isVocabularyWord(emb,documents.Vocabulary);
documents = removeWords(documents,idx);

To visualize how well the sentiment classifier generalizes to the new text, classify the sentiments on
the words that occur in the text, but not in the training data and visualize them in word clouds. Use
the word clouds to manually check that the classifier behaves as expected.

words = documents.Vocabulary;
words (ismember(words,wordsTrain)) = [];

vec = word2vec(emb,words);
[YPred,scores] = predict(mdl,vec);

figure

subplot(1,2,1)

idx = YPred == "Positive";
wordcloud(words(idx),scores(idx,1));
title("Predicted Positive Sentiment")

subplot(1,2,2)

wordcloud(words(~idx),scores(~idx,2));
title("Predicted Negative Sentiment")

2-75

2 Modeling and Prediction

Predicted Positive Sentiment

COMNECon Husa
summear saturday

keeping ..
dEEEI’P\;E [rainl:u:uuqht
5 Ies Creanm
*Ee%?g share friends

sunshinegarden
company Sur"lr'l}’ visit =

needs gk

--fllﬂlﬂ..’.; O .bnng
bba thanks Yf’”i

ibiza new 55"“3 e e
kmpv , fceland

today

lode hnpefully
waymml@ - bestie

first ceies . .
tennis paris flights
me lotes woohoo
everybody ..
forward
officially meatings

Predicted Negative Sentiment

MR maichig

ches theres
et mid night

. forgot .
ast satrg chllllng

gon na‘ﬁ'uts melting

a.rpﬂrtcashews office
examate grrr stop

amg a FJDCE} }"pse

kitchen SO0

pack just Uﬂfalr;"ﬁdcrgjn
iisay penalties s

thing

party pub hjtS00000000
wat cancelled
Gar e
ek raining ***"

crew

Elgh argh avocado
night aWay say
washout =g

To calculate the sentiment of a given piece of text, compute the sentiment score for each word in the

text and calculate the mean sentiment score.

Calculate the mean sentiment score of the updates. For each document, convert the words to word
vectors, predict the sentiment score on the word vectors, transform the scores using the score-to-
posterior transform function and then calculate the mean sentiment score.

for i = 1l:numel(documents)
words = string(documents(i));
vec = word2vec(emb,words);
[~,scores] = predict(mdl,vec);

sentimentScore(i) = mean(scores(:,1));

end

View the predicted sentiment scores with the text data. Scores greater than 0 correspond to positive
sentiment, scores less than 0 correspond to negative sentiment, and scores close to 0 correspond to

neutral sentiment.
table(sentimentScore', textData)

ans=50x2 table

Varl textData
1.8382 "Happy anniversary! « Next stop: Paris! » #vacation"

1.294 "Haha, BBQ on the beach, engage smug mode! [0« [#vacation"
1.0922 "getting ready for Saturday night [0#yum #weekend [[]

2-76

Train a Sentiment Classifier

0.094709
1.4073
-0.8356
-1.3556
1.4312
3.0458
-0.39243
0.8028
0.38217
3.03
2.3849
-0.0006176
0.52992

"Say it with me - I NEED A #VACATION!!! &"

"00Chilling Jdat home for the first time in ages..This is the life! [JJ#weekend"
"My last #weekend before the exam 001"

"can't believe my #vacation is over [JJso unfair"

"Can't wait for tennis this #weekend 00000

"I had so much fun! J000BEst trip EVER! J000@Macation #weekend"

"Hot weather and air con broke in car [J[#sweaty #roadtrip #vacation"

"00Check the out-of-office crew, we are officially ON #VACATION!! M

"Well that wasn’t how I expected this #weekend to go [JQTotal washout!! [

"So excited for my bestie to visit this #weekend! [0« [

"Who needs a #vacation when the weather is this good * [

"I love meetings in summer that run into the weekend! Wait that was sarcasm. B
"You know we all worked hard for this! We totes deserve this [JJ#vacation [J0Ibi.

Sentiment Lexicon Reading Function

This function reads the positive and negative words from the sentiment lexicon and returns a table.
The table contains variables Word and Label, where Label contains categorical values Positive
and Negative corresponding to the sentiment of each word.

function data = readlLexicon

% Read positive words
fidPositive = fopen(fullfile('opinion-lexicon-English', 'positive-words.txt'));
C = textscan(fidPositive, '%s', 'CommentStyle',"';");

wordsPositive = st

ring(C{1});

% Read negative words
fidNegative = fopen(fullfile('opinion-lexicon-English', 'negative-words.txt'));
C = textscan(fidNegative, '%s', 'CommentStyle',"';");

wordsNegative = st
fclose all;

ring(C{1});

% Create table of labeled words

words = [wordsPositive;wordsNegative];

labels = categorical(nan(numel(words),1));
labels(1:numel(wordsPositive)) = "Positive";
labels (numel(wordsPositive)+1l:end) = "Negative";

data = table(words

end

, Labels, 'VariableNames',{'Word', 'Label'});

Preprocessing Function

The function preprocessText performs the following steps:

A W N M

function documents

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove stop words (such as "and", "of", and "the") using removeStopWords.
Convert to lowercase using Lower.

= preprocessText(textData)

% Tokenize the text.

2-77

2 Modeling and Prediction

2-78

documents = tokenizedDocument (textData);

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Convert to lowercase.
documents = lower(documents);

end
Bibliography

1 Hu, Minqging, and Bing Liu. "Mining and summarizing customer reviews." In Proceedings of the
tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
168-177. ACM, 2004.

See Also

tokenizedDocument | bag0fWords | erasePunctuation | removeWords | removeStopWords |
wordcloud | word2vec | fastTextWordEmbedding

Related Examples

. “Analyze Sentiment in Text” on page 2-58

. “Generate Domain Specific Sentiment Lexicon” on page 2-61

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Containing Emojis” on page 2-52

. “Analyze Text Data Using Topic Models” on page 2-13

. “Analyze Text Data Using Multiword Phrases” on page 2-7

. “Classify Text Data Using Deep Learning” on page 2-90

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)

Extract Keywords from Text Data Using RAKE

Extract Keywords from Text Data Using RAKE

This example shows how to extract keywords from text data using Rapid Automatic Keyword
Extraction (RAKE).

The RAKE algorithm extracts keywords using a delimiter-based approach to identify candidate
keywords and scores them using word co-occurrences that appear in the candidate keywords.
Keywords can contain multiple tokens. Furthermore, the RAKE algorithm also merges keywords when
they appear multiple times, separated by the same merging delimiter.

Extract Keywords

Create an array of tokenized document containing the text data.

textData = [
"MATLAB provides tools for scientists and engineers. MATLAB is used by scientists and engine
"Analyze text and images. You can import text and images."
"Analyze text and images. Analyze text, images, and videos in MATLAB."];

documents = tokenizedDocument (textData);

Extract the keywords using the rakeKeywords function.
tbl = rakeKeywords(documents)

tbl=12x3 table

Keyword DocumentNumber Score
"MATLAB" "provides” "tools" 1 8
"MATLAB" o e 1 2
"scientists" "and" "engineers" 1 2
"scientists" o e 1 1
"engineers" o " 1 1
"Analyze" "text" e 2 4
"import" "text" e 2 4
"images" o e 2 1
"Analyze" "text" e 3 4
"images" o e 3 1
"videos" o e 3 1
"MATLAB" o e 3 1

If a keyword contains multiple words, then the ith element of the string array corresponds to the ith
word of the keyword. If the keyword has fewer words that the longest keyword, then remaining

entries of the string array are the empty string "".

For readability, transform the multi-word keywords into a single string using the join and strip
functions.

if size(tbl.Keyword,2) > 1

tbl.Keyword = strip(join(tbl.Keyword));
end
head (tbl)

Keyword DocumentNumber Score

2-79

2 Modeling and Prediction

"Analyze text"
"import text"
"images"

"MATLAB provides tools" 1 8
"MATLAB" 1 2
"scientists and engineers" 1 2
"scientists" 1 1
"engineers" 1 1
2 4
2 4
2 1

Specify Maximum Number of Keywords Per Document

The rakeKeywords function, by default, returns all identified keywords. To reduce the number of
keywords, use the 'MaxNumKeywords' option.

Extract the top three keywords for each document by setting the 'MaxNumKeywords' option to 3.
tbl = rakeKeywords(documents, 'MaxNumKeywords',3)

tb1=9x3 table

Keyword DocumentNumber Score
"MATLAB" "provides" "tools" 1 8
"MATLAB" e e 1 2
"scientists" "and" "engineers" 1 2
"Analyze" "text" e 2 4
"import" "text" e 2 4
"images" " e 2 1
"Analyze" "text" e 3 4
"images" " o 3 1
"videos" " o 3 1

Specify Delimiters

Notice that in the extracted keywords above, the function extracts the multi-word keyword "scientists
and engineers" from the first document, but does not extract the multi-word keyword "text and
images" from the second document. This is because the RAKE algorithm uses tokens appearing
between delimiters as candidate keywords, and the algorithm only merges keywords with delimiters
when the merged phrase appears multiple times.

In this case, the instances of the token "text" appears within the two different multi-word keyword
candidates "Analyze text" and "import text". Because, in this case, the function does not extract "text"
as a separate candidate keyword, the algorithm does not consider merging candidates with the
delimiter "and" and the candidate keyword "images".

You can specify the delimiters used for extracting keywords using the 'Delimiters' and
'MergingDelimiters 'options. To specify delimiters that should not appear in extracted keywords,
use the 'Delimiters' option. To specify delimiters that can appear in extracted keywords, use the
'MergingDelimiters' option.

Extract keywords from the same text as before and also specify the words "Analyze" and "import" as
merging delimiters.

newDelimiters = ["Analyze import"];
mergingDelimiters = [stopWords newDelimiters];

2-80

Extract Keywords from Text Data Using RAKE

tbl = rakeKeywords(documents, 'MergingDelimiters', mergingDelimiters)

tbl=12x3 table
Keyword DocumentNumber Score

"MATLAB" "provides™ "tools"
"MATLAB" " "
"scientists" "and" "engineers"
"scientists" " "
"engineers"
"text" "and" "images"
"text" e e
"images" " "
"text" e e
"images" " "
"videos"
"MATLAB" " "

WWWWNNNRRFER R R
RPHERRRRNRFRNN

Notice here that the function treats the tokens "text" and "images" as keywords and also extracts the
merged keyword "text and images". To learn more about the RAKE algorithm, see “Rapid Automatic
Keyword Extraction”.

Alternatives

You can experiment with different keyword extraction algorithms to see what works best with your
data. Because the RAKE algorithm uses a delimiter-based approach to extract candidate keywords,
the extracted keywords can be very long. Alternatively, you can try extracting keywords using
TextRank algorithm which starts with individual tokens as candidate keywords and then merges them
when appropriate. To extract keywords using TextRank, use the textrankKeywords function. To
learn more, see “Extract Keywords from Text Data Using TextRank” on page 2-82.

References

[1] Rose, Stuart, Dave Engel, Nick Cramer, and Wendy Cowley. "Automatic keyword extraction from
individual documents." Text mining: applications and theory 1 (2010): 1-20.

See Also
tokenizedDocument | rakeKeywords | textrankKeywords | extractSummary

More About
. “Extract Keywords from Text Data Using TextRank” on page 2-82

2-81

2 Modeling and Prediction

Extract Keywords from Text Data Using TextRank

This example shows to extract keywords from text data using TextRank.

The TextRank keyword extraction algorithm extracts keywords using a part-of-speech tag-based
approach to identify candidate keywords and scores them using word co-occurrences determined by a
sliding window. Keywords can contain multiple tokens. Furthermore, the TextRank keyword
extraction algorithm also merges keywords when they appear consecutively in a document.

Extract Keywords

Create an array of tokenized document containing the text data.

textData = [
"MATLAB provides really useful tools for engineers. Scientists use many useful MATLAB toolbo:
"MATLAB and Simulink have many features. MATLAB and Simulink makes it easy to develop models
"You can easily import data in MATLAB. In particular, you can easily import text data."];
documents = tokenizedDocument (textData);

Extract the keywords using the textrankKeywords function.
tbl = textrankKeywords(documents)

tbl=6x3 table

Keyword DocumentNumber Score
"useful"” "MATLAB" “toolboxes" 1 4.8695
"useful"” . . 1 2.3612
"MATLAB" " o 1 1.6212
"many" "features" . 2 4.6152
"text" "data" . 3 3.4781
"data" " . 3 1.7391

If a keyword contains multiple words, then the ith element of the string array corresponds to the ith
word of the keyword. If the keyword has fewer words that the longest keyword, then remaining
entries of the string array are the empty string "".

For readability, transform the multi-word keywords into a single string using the join and strip
functions.

if size(tbl.Keyword,2) > 1

tbl.Keyword = strip(join(tbl.Keyword));
end
head (tbl)

Keyword DocumentNumber Score

"useful MATLAB toolboxes" 1 4.8695
"useful" 1 2.3612
"MATLAB" 1 1.6212
"many features" 2 4.6152
"text data" 3 3.4781
"data" 3 1.7391

2-82

Extract Keywords from Text Data Using TextRank

Specify Maximum Number of Keywords Per Document

The textrankKeywords function, by default, returns all identified keywords. To reduce the number
of keywords, use the 'MaxNumKeywords' option.

Extract the top two keywords for each document by setting the 'MaxNumKeywords' option to 2.

tbl = textrankKeywords(documents, 'MaxNumKeywords',2)

tbl=5x3 table

Keyword DocumentNumber Score
"useful"” "MATLAB" "toolboxes" 1 4.8695
"useful"” " " 1 2.3612
“many" "features" o 2 4.6152
"text" "data" " 3 3.4781
"data" " " 3 1.7391

Specify Part-of-Speech Tags

Notice that in the extracted keywords above, the function does not consider the word "import" as a
keyword. This is because the TextRank keyword extraction algorithm, by default, uses tokens with the
part-of-speech tags "noun", "proper-noun" and "adjective" as candidate keywords. Because the word
"import" is a verb, the algorithm does not consider this as a candidate keyword. Similarly, the
algorithm does not consider the adverb "easily" as a candidate keyword.

To specify which part-of-speech tags to use for identifying candidate keywords, use the
'"Part0fSpeech' option.

Extract keywords from the same text as before and also specify also specify the part-of-speech tags
"adverb" and "verb".

newTags = ["adverb" "verb"];
tags = ["noun" "proper-noun" "adjective" newTags];
tbl = textrankKeywords(documents, 'Part0fSpeech', tags)

tbl=7x3 table

Keyword DocumentNumber Score
"use" "many" "useful” "MATLAB" 1 5.8839
"useful" o " n 1 2.0169
"MATLAB" o " n 1 1.5478
"Simulink" "have" “many" o 2 4.5058
"Simulink" o " n 2 1.5161
"import" "text" "data" . 3 4.7921
"import" "data" o o 3 3.4195

Notice here that the function treats the token "import" as a candidate keyword and merges it into the
multi-word keywords "import data" and "import text data".

Specify Windows Size

Notice that in the extracted keywords above, that the function does not extract the adverb "easily" as
a keyword. This is because of the proximity of these words in the text to other candidate keywords.

2-83

2 Modeling and Prediction

2-84

The TextRank keyword extraction algorithm scores candidate keywords using the number of pairwise
co-occurrences within a sliding window. To increase the window size, use the 'Window' option.
Increasing the window size enables the function to find more co-occurrences between keywords
which increases the keyword importance scores. This can result in finding more relevant keywords at
the cost of potentially over-scoring less relevant keywords.

Extract keywords from the same text as before and also specify also specify a window size of 3.

tbl = textrankKeywords(documents,
'PartOfSpeech', tags,

'Window', 3)
tb1=8x3 table

Keyword DocumentNumber Score
"many" "useful" "MATLAB" e 1 4.2185
"really" "useful" o o 1 2.8851
"MATLAB" e e e 1 1.3154
"Simulink" e e e 2 1.4526
"develop" e e e 2 1.0912
"features" e e e 2 1.0794
"easily" "import" “text" "data" 3 5.2989
"easily" "import" "data" o 3 4.0842

Notice here that the function treats the tokens "easily" as keywords and merges it into the multi-word
keywords "easily import text data" and "easily import data".

To learn more about the TextRank keyword extraction algorithm, see “TextRank Keyword Extraction”.

Alternatives

You can experiment with different keyword extraction algorithms to see what works best with your
data. Because the TextRank keywords algorithm uses a part-of-speech tag-based approach to extract
candidate keywords, the extracted keywords can be short. Alternatively, you can try extracting
keywords using RAKE algorithm which extracts sequences of tokens appearing between delimiters as
candidate keywords. To extract keywords using RAKE, use the rakeKeywords function. To learn
more, see “Extract Keywords from Text Data Using RAKE” on page 2-79.

References

[1] Mihalcea, Rada, and Paul Tarau. "Textrank: Bringing order into text." In Proceedings of the 2004
conference on empirical methods in natural language processing, pp. 404-411. 2004.

See Also
tokenizedDocument | rakeKeywords | textrankKeywords | extractSummary

More About
. “Extract Keywords from Text Data Using RAKE” on page 2-79

Classify Documents Using Document Embeddings

Classify Documents Using Document Embeddings

This example shows how to train a document classifier by converting documents to feature vectors
using word embeddings.

Most machine learning techniques require feature vectors as input to train a classifier.

A word embedding maps individual words to vectors. You can use a word embedding to map a
document to a single vector by combining the word vectors, for example, by calculating the mean
vector to create a document vector.

Given a data set of labeled document vectors, you can then train a machine learning model to classify
these documents.

Load Pretrained Word Embedding

Load a pretrained word embedding using the fastTextWordEmbedding function. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding
support package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabu'l-ary: [II’II Il.thell II.II Ilandll IIO.fII II.tOII Ilinll Ilall mnuon II:II II)\

For reproducibility, use the rng function with the "default" option.
rng("default");

Load Training Data

The next step is loading the example data. The file factoryReports. csv contains factory reports,
including a text description and categorical labels for each event.

filename = "factoryReports.csv";

data = readtable(filename,TextType="string");

head(data)

ans=8x5 table

Description Category

"Items are occasionally getting stuck in the scanner spools." "Mechanical Failure
"Loud rattling and banging sounds are coming from assembler pistons." "Mechanical Failure
"There are cuts to the power when starting the plant.” "Electronic Failure
"Fried capacitors in the assembler." "Electronic Failure
"Mixer tripped the fuses." "Electronic Failure
"Burst pipe in the constructing agent is spraying coolant." "Leak"
"A fuse is blown in the mixer." "Electronic Failure
"Things continue to tumble off of the belt." "Mechanical Failure

2-85

2 Modeling and Prediction

2-86

The goal of this example is to classify events by the label in the Category column. To divide the data
into classes, convert these labels to categorical.

data.Category = categorical(data.Category);

The next step is to create a partition to split our data into sets for training and testing. Partition the
data into a training partition and a held-out partition for validation and testing. Specify the holdout
percentage to be 30%.

cvp = cvpartition(data.Category,Holdout=0.3);

Use the partitions to obtain the target labels for training and test. Later in the example, after the
creation of the vectors for the documents, the partition will also be used to split the input data into
training and test.

TTrain = data.Category(training(cvp),:);
TTest = data.Category(test(cvp),:);

It can be useful to create a function that performs preprocessing so you can prepare different
collections of text data in the same way.

Create a function that tokenizes and preprocesses the text data so it can be used for analysis. The
preprocessText function, listed in the Example Preprocessing Function on page 2-89 section of
the example, performs the following steps:

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.

A W N M

Lowercase all words.
documents = preprocessText(data.Description);
Convert Documents to Feature Vectors

The function word2vec is used to convert from tokens to vectors. For larger documents, it's possible
to combine these word vectors into a single one computing the mean across all words. This example
shows how to obtain document vectors.

Obtain the vector for each document computing the mean across all the words in the document.
Compute the word vectors using the word2vec function and remove any words missing from the
embedding vocabulary using the rmissing function. Calculate the mean over the document's words
(the first dimension of the data).

meanEmbedding = zeros(numel(documents),emb.Dimension);
for k=1:numel(documents)
words = string(documents(k));
wordVectors = word2vec(emb,words);
wordVectors = rmmissing(wordVectors);
meanEmbedding(k, :) = mean(wordVectors,1);
end
meanEmbeddingTrain = meanEmbedding(training(cvp),:);
meanEmbeddingTest = meanEmbedding(test(cvp),:);

View the size of the embedded test data. The array is a numObservations-by-embeddingDimension
array where numObservations is the number of test documents, and embeddingDimension is the
embedding dimension.

Classify Documents Using Document Embeddings

size(meanEmbeddingTest)
ans = 1Ix2

144 300

The output for each document is a single 300 dimension array that summarizes all the features of the
word vectors contained in the document. The vector for the first document in the test set is obtained
as follows:

meanEmbeddingTest (1, :)
ans = 1x300

-0.1367 -0.0284 -0.1061 -0.0034 0.0577 -0.0662 -0.0845 -0.0606 0.0117 -0.

Once the document vectors are obtained, it's also possible to embed the document vectors in a two-
dimensional space using tsne by specifying the number of dimensions to be two. A t-SNE plot can
help show clusters in the data, which can indicate that you can build a machine learning model.

Y = tsne(meanEmbeddingTest);

gscatter(Y(:,1),Y(:,2), categorical(TTest))
title("Factory Report Embeddings")

Factory Report Embeddings

-8 T .
A0k . i
12 F o . " i
L L] |
-14 . .
LY .]
6+ o i
8tk . . i
- L] []
[]
20 1 . . ¢ . 8
. . . -
L] [] ™
[] .
22+ b . i
(]
o 0 -
-24 - ® Electronic Failure T
e, Leak
-26 N Mechanical Failure .
& Soflware Failure
_28 1 1 1 1 1
-15 -10 -5 0 5 10 15

2-87

2 Modeling and Prediction

Train Document Classifier

After visualizing the document vectors and respective clusters, you can train a multiclass linear
classification model using fitcecoc.

mdl = fitcecoc(meanEmbeddingTrain,TTrain,Learners="1linear")

mdl =
CompactClassificationECOC
ResponseName: 'Y
ClassNames: [Electronic Failure Leak Mechanical Failure Software Failure]
ScoreTransform: 'none'
BinarylLearners: {6x1 cell}
CodingMatrix: [4x6 double]

Properties, Methods

Test Model

Compute the scores for the mean vectors, visualizing the accuracy results and the confusion matrix.

YTest = predict(mdl,meanEmbeddingTest);
acc = mean(YTest == TTest)

acc = 0.9444

confusionchart(YTest,TTest)

Electronic Failurs 1 2
o Leak 20 2
L]
=
[
1]
=
= Mechanical Failure 3

Software Failure 12

e
@

FPredicted Class

2-88

Classify Documents Using Document Embeddings

Large numbers on diagonal indicate good prediction accuracy for the corresponding classes. Large
numbers on the off-diagonal indicate strong confusion between the corresponding classes.

Example Preprocessing Function
The function preprocessText, performs the following steps in order:

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Lowercase all words.

D W N R

function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument(textData);

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Lowercase all words.
documents = lower(documents);

end

See Also

fastTextWordEmbedding | tokenizedDocument | word2vec | readWordEmbedding |
trainWordEmbedding | wordEmbedding

Related Examples

. “Visualize Word Embeddings Using Text Scatter Plots” on page 3-8

. “Extract Text Data from Files” on page 1-2

. “Prepare Text Data for Analysis” on page 1-11

. “Classify Text Data Using Deep Learning” on page 2-90

. “Classify Text Data Using Convolutional Neural Network” on page 2-98

2-89

2 Modeling and Prediction

Classify Text Data Using Deep Learning

2-90

This example shows how to classify text data using a deep learning long short-term memory (LSTM)

network.

Text data is naturally sequential. A piece of text is a sequence of words, which might have

dependencies between them. To learn and use long-term dependencies to classify sequence data, use
an LSTM neural network. An LSTM network is a type of recurrent neural network (RNN) that can

learn long-term dependencies between time steps of sequence data.

To input text to an LSTM network, first convert the text data into numeric sequences. You can achieve
this using a word encoding which maps documents to sequences of numeric indices. For better
results, also include a word embedding layer in the network. Word embeddings map words in a
vocabulary to numeric vectors rather than scalar indices. These embeddings capture semantic details
of the words, so that words with similar meanings have similar vectors. They also model relationships
between words through vector arithmetic. For example, the relationship "Rome is to Italy as Paris is

to France" is described by the equation Italy - Rome + Paris = France.
There are four steps in training and using the LSTM network in this example:

* Import and preprocess the data.

* Convert the words to numeric sequences using a word encoding.
* Create and train an LSTM network with a word embedding layer.
» Classify new text data using the trained LSTM network.

Import Data

Import the factory reports data. This data contains labeled textual descriptions of factory events. To

import the text data as strings, specify the text type to be 'string"'.

filename = "factoryReports.csv";
data = readtable(filename, 'TextType', 'string');
head(data)

ans=8x5 table
Description

"Items are occasionally getting stuck in the scanner spools.
"Loud rattling and banging sounds are coming from assembler pistons."
"There are cuts to the power when starting the plant."

"Fried capacitors in the assembler."

"Mixer tripped the fuses."

"Burst pipe in the constructing agent is spraying coolant."

"A fuse is blown in the mixer."

"Things continue to tumble off of the belt."

Category

"Mechanical
"Mechanical
"Electronic
"Electronic
"Electronic
"Leak"

"Electronic
"Mechanical

The goal of this example is to classify events by the label in the Category column. To divide the data

into classes, convert these labels to categorical.

data.Category = categorical(data.Category);

View the distribution of the classes in the data using a histogram.

Failure!
Failure!
Failure!
Failure!
Failure!

Failure!
Failure!

Classify Text Data Using Deep Learning

figure
histogram(data.Category);
xlabel("Class")
ylabel("Frequency")
title("Class Distribution")

Class Distribution
250 T T T T

Frequency

The next step is to partition it into sets for training and validation. Partition the data into a training
partition and a held-out partition for validation and testing. Specify the holdout percentage to be
20%.

cvp = cvpartition(data.Category, 'Holdout',0.2);
dataTrain = data(training(cvp),:);
dataValidation = data(test(cvp),:);

Extract the text data and labels from the partitioned tables.

textDataTrain = dataTrain.Description;
textDataValidation = dataValidation.Description;
YTrain = dataTrain.Category;

YValidation = dataValidation.Category;

To check that you have imported the data correctly, visualize the training text data using a word
cloud.

figure

wordcloud(textDataTrain);
title("Training Data")

2-91

2 Modeling and Prediction

Training Data
o shaking gometimes
pde UCtS undamazth)
iy b e bent . e comin g srlked

“starting @Ppearing Items Things

startup ' . 1 tripped
T et el W ciassifer
continue StUCk inside = arm fails fUSG emitted

i a en electrica
entéﬁ'i '”'ng“gr”p m |Xe Ds;frg;z : i ;r:n;{:mg
i Software O CAI NN Csorter pon

capacitors sz conveyor Loud .
B GFHCKS RObOt | Sou n slight C‘.DD|Elﬂt
interface rea_l get liqud - mat_erlal wexpeciedy
eaking controller SPOOIS jammed
. _ |
ratting {ime _supply

handing s freazes
programming oosasaay

Preprocess Text Data

Create a function that tokenizes and preprocesses the text data. The function preprocessText,
listed at the end of the example, performs these steps:

1 Tokenize the text using tokenizedDocument.
2 Convert the text to lowercase using lower.
3 Erase the punctuation using erasePunctuation.

Preprocess the training data and the validation data using the preprocessText function.

documentsTrain = preprocessText(textDataTrain);
documentsValidation = preprocessText(textDataValidation);

View the first few preprocessed training documents.
documentsTrain(1:5)

ans =
5x1 tokenizedDocument:

9 tokens: items are occasionally getting stuck in the scanner spools

10 tokens: loud rattling and banging sounds are coming from assembler pistons
10 tokens: there are cuts to the power when starting the plant

5 tokens: fried capacitors in the assembler

4 tokens: mixer tripped the fuses

2-92

Classify Text Data Using Deep Learning

Convert Document to Sequences

To input the documents into an LSTM network, use a word encoding to convert the documents into
sequences of numeric indices.

To create a word encoding, use the wordEncoding function.

enc = wordEncoding(documentsTrain);

The next conversion step is to pad and truncate documents so they are all the same length. The
trainingOptions function provides options to pad and truncate input sequences automatically.
However, these options are not well suited for sequences of word vectors. Instead, pad and truncate
the sequences manually. If you left-pad and truncate the sequences of word vectors, then the training
might improve.

To pad and truncate the documents, first choose a target length, and then truncate documents that
are longer than it and left-pad documents that are shorter than it. For best results, the target length
should be short without discarding large amounts of data. To find a suitable target length, view a
histogram of the training document lengths.

documentLengths = doclength(documentsTrain);
figure

histogram(documentLengths)

title("Document Lengths")

xlabel("Length")

ylabel("Number of Documents")

Document Lengths

Mumber of Documents

2-93

2 Modeling and Prediction

2-94

Most of the training documents have fewer than 10 tokens. Use this as your target length for

truncation and padding.

Convert the documents to sequences of numeric indices using doc2sequence. To truncate or left-pad
the sequences to have length 10, set the 'Length' option to 10.

sequencelLength = 10;

XTrain = doc2sequence(enc,documentsTrain, 'Length',sequenceLength);

XTrain(1:5)

ans=5x1 cell array
{1x10 double}
{1x10 double}
{1x10 double}
{1x10 double}
{1x10 double}

Convert the validation documents to sequences using the same options.

XValidation = doc2sequence(enc,documentsValidation, 'Length',sequencelLength);

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include a sequence
input layer and set the input size to 1. Next, include a word embedding layer of dimension 50 and the
same number of words as the word encoding. Next, include an LSTM layer and set the number of
hidden units to 80. To use the LSTM layer for a sequence-to-label classification problem, set the
output mode to 'last'. Finally, add a fully connected layer with the same size as the number of
classes, a softmax layer, and a classification layer.

inputSize = 1;
embeddingDimension = 50;
numHiddenUnits = 80;

numWords = enc.NumWords;

numClasses = numel(categories(YTrain));

layers = [...
sequencelnputlLayer(inputSize)

wordEmbeddinglLayer(embeddingDimension, numWords)
lstmLayer(numHiddenUnits, 'OutputMode', 'last")

fullyConnectedLayer (numClasses)
softmaxLayer
classificationlLayer]

layers =
6x1 Layer array with layers:

1 t Sequence Input

2 b Word Embedding Layer
3 Y LSTM

4 v Fully Connected

5 Y Softmax

6 [}

Classification Output
Specify Training Options
Specify the training options:

Sequence input with 1 dimensions

Word embedding layer with 50 dimensions and 423 unique wor
LSTM with 80 hidden units

4 fully connected layer

softmax

crossentropyex

Classify Text Data Using Deep Learning

* Train using the Adam solver.
* Specify a mini-batch size of 16.

» Shulffle the data every epoch.

* Monitor the training progress by setting the 'Plots' optionto 'training-progress'.

» Specify the validation data using the 'ValidationData' option.

» Suppress verbose output by setting the 'Verbose' option to false.

By default, trainNetwork uses a GPU if one is available. Otherwise, it uses the CPU. To specify the
execution environment manually, use the 'ExecutionEnvironment' name-value pair argument of
trainingOptions. Training on a CPU can take significantly longer than training on a GPU. Training
with a GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information on
supported devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

options = trainingOptions('adam',
'MiniBatchSize',16, ..
'GradientThreshold', 2,
'Shuffle', 'every-epoch',
'ValidationData',{XValidation,YValidation},
'Plots', 'training-progress’',
'Verbose', false);

Train the LSTM network using the trainNetwork function.

net = trainNetwork(XTrain,YTrain, layers,options);

Training Progress {15~Jan-2020 10:54:56)

e — e - g —— e
- - ————8————8 @Fia
20 [+
10
10 20 30
0 | 1 | | | | [
0 100 200 300 400 500 600 700
Iteration
| ,a-.___.iig_.____.__-—-—"___"_"“-H"@Fma\
——e-——-e
20 0
L | | ?

Iteration

Results
‘validation aceuracy.
Training finished.

90.63%

Training Time:
Starttime:
Elapsed time: 1286t

Training Cycle

Epoch: 3001 30
fteration; 7200720
lterations per epoch 24
Maximum iterations; 720

Vvalidation

Frequency: 50 iterations

Other Information
Hardware resource: Single CPU
Learning rate schedule: Constant

Learning rate: 0.001

Learn more

Accuracy

Training (smoothed)
Training
— - - Vaidation

Loss

Training (smoothed)
Training
~ -~ - Vaidation

Reached final iteration

15-Jan-2020 10:54:56

2-95

2 Modeling and Prediction

2-96

Predict Using New Data

Classify the event type of three new reports. Create a string array containing the new reports.
reportsNew = [...
"Coolant is pooling underneath sorter."

"Sorter blows fuses at start up."
"There are some very loud rattling sounds coming from the assembler."];

Preprocess the text data using the preprocessing steps as the training documents.

documentsNew = preprocessText(reportsNew);

Convert the text data to sequences using doc2sequence with the same options as when creating the
training sequences.

XNew = doc2sequence(enc,documentsNew, 'Length',sequencelLength);
Classify the new sequences using the trained LSTM network.
labelsNew = classify(net,XNew)
labelsNew = 3x1 categorical
Leak

Electronic Failure
Mechanical Failure

Preprocessing Function

The function preprocessText performs these steps:

1 Tokenize the text using tokenizedDocument.
2 Convert the text to lowercase using lower.
3 Erase the punctuation using erasePunctuation.

function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument (textData);

% Convert to lowercase.
documents = lower(documents);

% Erase punctuation.
documents = erasePunctuation(documents);

end
See Also

fastTextWordEmbedding | wordEmbeddinglLayer | tokenizedDocument | LstmLayer |
trainNetwork | trainingOptions | doc2sequence | sequencelnputlLayer |wordcloud

Related Examples
. “Classify Text Data Using Convolutional Neural Network” on page 2-98

Classify Text Data Using Deep Learning

“Classify Out-of-Memory Text Data Using Deep Learning” on page 2-171
“Generate Text Using Deep Learning” (Deep Learning Toolbox)
“Word-By-Word Text Generation Using Deep Learning” on page 2-183
“Create Simple Text Model for Classification” on page 2-2

“Analyze Text Data Using Topic Models” on page 2-13

“Analyze Text Data Using Multiword Phrases” on page 2-7

“Train a Sentiment Classifier” on page 2-71

“Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)

2-97

2 Modeling and Prediction

Classify Text Data Using Convolutional Neural Network

2-98

This example shows how to classify text data using a convolutional neural network.

To classify text data using convolutions, use 1-D convolutional layers that convolve over the time
dimension of the input.

This example trains a network with 1-D convolutional filters of varying widths. The width of each
filter corresponds the number of words the filter can see (the n-gram length). The network has
multiple branches of convolutional layers, so it can use different n-gram lengths.

Load Data

Create a tabular text datastore from the data in factoryReports. csv and view the first few
reports.

data = readtable("factoryReports.csv");
head(data)

ans=8x5 table

Description Category

{'Items are occasionally getting stuck in the scanner spools.'

{'Loud rattling and banging sounds are coming from assembler pistons.'
{'There are cuts to the power when starting the plant.'

{'Fried capacitors in the assembler.'

{'Mixer tripped the fuses.'

{'Burst pipe in the constructing agent is spraying coolant.'

{'A fuse is blown in the mixer.'

{'Things continue to tumble off of the belt.'

{'Mechanical
{'Mechanical
{'Electronic
{'Electronic
{'Electronic
{'Leak"

{'Electronic
{'Mechanical

e o e e e e

Partition the data into training and validation partitions. Use 80% of the data for training and the
remaining data for validation.

cvp = cvpartition(data.Category,Holdout=0.2);
dataTrain = data(training(cvp),:);
datavValidation = data(test(cvp),:);

Preprocess Text Data

Extract the text data from the "Description" column of the table and preprocess it using the
preprocessText function, listed in the section Preprocess Text Function on page 2-104 of the
example.

documentsTrain = preprocessText(dataTrain.Description);

Extract the labels from the "Category" column and convert them to categorical.
TTrain = categorical(dataTrain.Category);

View the class names and the number of observations.

classNames = unique(TTrain)

Faili
Faili
Faili
Faili
Faili

Faili
Faili

Classify Text Data Using Convolutional Neural Network

classNames = 4x1 categorical
Electronic Failure
Leak
Mechanical Failure
Software Failure

numObservations = numel(TTrain)
numObservations = 384
Extract and preprocess the validation data using the same steps.

documentsValidation = preprocessText(dataValidation.Description);
TValidation = categorical(dataValidation.Category);

Convert Documents to Sequences

To input the documents into a neural network, use a word encoding to convert the documents into
sequences of numeric indices.

Create a word encoding from the documents.

enc = wordEncoding(documentsTrain);

View the vocabulary size of the word encoding. The vocabulary size is the number of unique words of
the word encoding.

numWords = enc.NumWords

numWords = 436

Convert the documents to sequences of integers using the doc2sequence function.

XTrain = doc2sequence(enc,documentsTrain);

Convert the validation documents to sequences using the word encoding created from the training
data.

XValidation = doc2sequence(enc,documentsValidation);

Define Network Architecture

Define the network architecture for the classification task.

The following steps describe the network architecture.

* Specify an input size of 1, which corresponds to the channel dimension of the integer sequence
input.

* Embed the input using a word embedding of dimension 100.

* For the n-gram lengths 2, 3, 4, and 5, create blocks of layers containing a convolutional layer, a
batch normalization layer, a ReLU layer, a dropout layer, and a max pooling layer.

» For each block, specify 200 convolutional filters of size 1-by-N and a global max pooling layer.

* Connect the input layer to each block and concatenate the outputs of the blocks using a
concatenation layer.

» To classify the outputs, include a fully connected layer with output size K, a softmax layer, and a
classification layer, where K is the number of classes.

2-99

2 Modeling and Prediction

2-100

Specify the network hyperparameters.

embeddingDimension = 100;
ngramLengths = [2 3 4 5];
numFilters = 200;

First, create a layer graph containing the input layer and a word embedding layer of dimension 100.
To help connect the word embedding layer to the convolution layers, set the word embedding layer
name to "emb". To check that the convolution layers do not convolve the sequences to have a length
of zero during training, set the MinLength option to the length of the shortest sequence in the
training data.

minLength = min(doclength(documentsTrain));
layers = [
sequencelnputLayer(1l,MinLength=minLength)
wordEmbeddinglLayer(embeddingDimension, numWords,Name="emb")];
lgraph = layerGraph(layers);

For each of the n-gram lengths, create a block of 1-D convolution, batch normalization, ReLU,
dropout, and 1-D global max pooling layers. Connect each block to the word embedding layer.

numBlocks = numel(ngramLengths);

for j = l:numBlocks
N = ngramLengths(j);
block = [
convolutionldLayer(N,numFilters,Name="conv"+N,Padding="same")
batchNormalizationLayer(Name="bn"+N)
reluLayer(Name="relu"+N)
dropoutLayer(0.2,Name="drop"+N)
globalMaxPoolingldLayer (Name="max"+N)];
lgraph = addLayers(lgraph,block);
lgraph = connectlLayers(lgraph,"emb","conv"+N);
end

Add the concatenation layer, the fully connected layer, the softmax layer, and the classification layer.
numClasses = numel(classNames);

layers = [
concatenationLayer(1l,numBlocks,Name="cat")
fullyConnectedLayer(numClasses,Name="fc")
softmaxLayer(Name="soft")
classificationLayer(Name="classification")];

lgraph = addLayers(lgraph,layers);

Connect the global max pooling layers to the concatenation layer and view the network architecture
in a plot.

for j = l:numBlocks

N = ngramLengths(j);

lgraph = connectlLayers(lgraph, "max"+N,"cat/in"+j);
end
figure

Classify Text Data Using Convolutional Neural Network

plot(lgraph)
title("Network Architecture")

Metwork Architecture

.

" ey,

hE""’.ﬂL.-,r
y Bk
L L - L L
{0 { Oty ¥ iy { O
L] L L L
f 12 f Sz g ! Sng
. . . .,
| "'ﬂr.-,'_.‘-_; ' "'h,'_.;f ' "'h,'_.q- | "'h,'_.ﬁ
) ™ . ™.
| 9"'.*;—;‘? Y D"“_*gt; y O Oy | D"’—‘n:}
» . L]
.-'rra*_;‘_) hi‘-’:'x‘-_;l y hr"ﬂJn;, .-'rra_'r&?

.

y —af

.

s

?39&

Ja?\‘irll' Ea
’I"O'n

Train Network
Specify the training options:

¢ Train with a mini-batch size of 128.
* Validate the network using the validation data.
* Return the network with the lowest validation loss.

» Display the training progress plot and suppress the verbose output.

options = trainingOptions("adam",
MiniBatchSize=128, ...
ValidationData={XValidation,TValidation},
OutputNetwork="best-validation-loss",
Plots="training-progress",
Verbose=false);

Train the network using the trainNetwork function.

net = trainNetwork(XTrain,TTrain,lgraph,options);

2-101

2 Modeling and Prediction

Training Progress (07-Jan-2022 11:48:26)

_WFimm — — e e -
- -
-
-
”
-
-
£
&
=
5
o
<
10—
10 20 30
0 \ 1 L | 1 | | 1 |
0 10 20 30 40 50 60 70 a0 90
Iteration
&
-
= =
N B S I
10, | @ Fmar — — 20~ | ‘ 30
30 40 50 60 70 a0 a0
lteration

Test Network

Classify the validation data using the trained network.

YValidation =

classify(net,XValidation);

Visualize the predictions in a confusion chart.

figure

confusionchart(TValidation,YValidation)

2-102

Results
Validation accuracy: 93.75%

Training finished: Max epochs completed

Training Time
Start time: 07-Jan-2022 11:48:26

Elapsed time: 9sec

Training Cycle

Epoch 300730
Iteration: 90 of 90
lterations per epoch 3

Maximum iterations: 90
Validation

Frequency’ 50 iterations

Other Information

Hardware resource: Single GPU
Learning rate schedule: Constant
Learning rate 0.001

[Export Training Plot Leamn more

Accuracy

Training (smoothed)
Training
— —@— - Validation

Loss

Training (smoothed)
Training
— —@— - Validation

Classify Text Data Using Convolutional Neural Network

Electronic Failure 3
wn Leak 1 13
@
O
1B}
Z
— . .
Mechanical Failurs 1 1
Software Failure 9
™ o ™ W
o -} &
o acﬁc?’ @ﬁ”af‘
ﬁﬁp %Mﬂp S0

Predicted Class

Calculate the classification accuracy. The accuracy is the proportion of labels predicted correctly.
accuracy = mean(TValidation == YValidation)

accuracy = 0.9375

Predict Using New Data

Classify the event type of three new reports. Create a string array containing the new reports.

reportsNew = [
"Coolant is pooling underneath sorter."
"Sorter blows fuses at start up."
"There are some very loud rattling sounds coming from the assembler."];

Preprocess the text data using the preprocessing steps as the training and validation documents.

documentsNew = preprocessText(reportsNew);
XNew = doc2sequence(enc,documentsNew) ;

Classify the new sequences using the trained network.

YNew

classify(net,XNew)

YNew = 3x1 categorical
Leak
Electronic Failure
Mechanical Failure

2-103

2 Modeling and Prediction

2-104

Preprocess Text Function

The preprocessTextData function takes text data as input and performs these steps:

1 Tokenize the text.
2 Convert the text to lowercase.

function documents = preprocessText(textData)

documents = tokenizedDocument(textData);
documents = lower(documents);

end

See Also

fastTextWordEmbedding | wordcloud | wordEmbedding | layerGraph | convolution2dLayer
| batchNormalizationLayer | trainingOptions | trainNetwork | doc2sequence |
tokenizedDocument

Related Examples

. “Classify Text Data Using Deep Learning” on page 2-90

. “Classify Out-of-Memory Text Data Using Deep Learning” on page 2-171
. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Using Topic Models” on page 2-13

. “Analyze Text Data Using Multiword Phrases” on page 2-7

. “Train a Sentiment Classifier” on page 2-71

. “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
. “Deep Learning in MATLAB” (Deep Learning Toolbox)

Classify Text Data Using Custom Training Loop

Classify Text Data Using Custom Training Loop

This example shows how to classify text data using a deep learning bidirectional long short-term

memory (BiLSTM) network with a custom training loop.

When training a deep learning network using the trainNetwork function, if trainingOptions
does not provide the options you need (for example, a custom learning rate schedule), then you can
define your own custom training loop using automatic differentiation. For an example showing how to
classify text data using the trainNetwork function, see “Classify Text Data Using Deep Learning”

(Deep Learning Toolbox).

This example trains a network to classify text data with the time-based decay learning rate schedule:

for each iteration, the solver uses the learning rate given by p; = %, where t is the iteration

number, pg is the initial learning rate, and k is the decay.

Import Data

Import the factory reports data. This data contains labeled textual descriptions of factory events. To

import the text data as strings, specify the text type to be "string".

filename = "factoryReports.csv";
data = readtable(filename,TextType="string");
head(data)

ans=8x5 table
Description

"Items are occasionally getting stuck in the scanner spools.
"Loud rattling and banging sounds are coming from assembler pistons."
"There are cuts to the power when starting the plant."

"Fried capacitors in the assembler."

"Mixer tripped the fuses."

"Burst pipe in the constructing agent is spraying coolant."

"A fuse is blown in the mixer."

"Things continue to tumble off of the belt."

Category

"Mechanical
"Mechanical
"Electronic
"Electronic
"Electronic
"Leak"

"Electronic
"Mechanical

The goal of this example is to classify events by the label in the Category column. To divide the data

into classes, convert these labels to categorical.
data.Category = categorical(data.Category);
View the distribution of the classes in the data using a histogram.

figure
histogram(data.Category);
xlabel("Class")
ylabel("Frequency")
title("Class Distribution™)

2-105

Failure!
Failure!
Failure!
Failure!
Failure!

Failure!
Failure!

2 Modeling and Prediction

Class Distribution
250 T T T T

Frequency

The next step is to partition it into sets for training and validation. Partition the data into a training
partition and a held-out partition for validation and testing. Specify the holdout percentage to be
20%.

cvp = cvpartition(data.Category,Holdout=0.2);
dataTrain = data(training(cvp),:);
dataValidation = data(test(cvp),:);

Extract the text data and labels from the partitioned tables.

textDataTrain = dataTrain.Description;
textDataValidation = dataValidation.Description;
TTrain = dataTrain.Category;

TValidation = dataValidation.Category;

To check that you have imported the data correctly, visualize the training text data using a word
cloud.

figure

wordcloud(textDataTrain);
title("Training Data")

2-106

Classify Text Data Using Custom Training Loop

Tralnmg Data

showing

oaying glactrical overheats .
SEEA‘EW blender kff’ftware appearing

inside CO ntFal |er bOt StUCl‘p(la:c:.rﬁetlmes

Materlal
heard 33SEMblEr.Meer

crashed agent time « arim beilt Llémokesortfng

e anssorter m |Xe line fall COO|E]I"IIET:::

coming

sanprod uctsS canne I'Spggg;i‘;fﬂé!

TranSpDrt continues hent leaking

- power r FusesouNdblown, =,

starting

undenmeath Et s
%!...constructing ©verheating
oone, cracked - o
tripped ™7
View the number of classes.

classes = categories(TTrain);
numClasses = numel(classes)

numClasses = 4

Preprocess Text Data

Create a function that tokenizes and preprocesses the text data. The function preprocessText,

listed at the end of the example, performs these steps:

1 Tokenize the text using tokenizedDocument.
2 Convert the text to lowercase using lower.
3 FErase the punctuation using erasePunctuation.

Preprocess the training data and the validation data using the preprocessText function.

documentsTrain = preprocessText(textDataTrain);
documentsValidation = preprocessText(textDataValidation);

View the first few preprocessed training documents.

documentsTrain(1:5)

ans =
5x1 tokenizedDocument:

2-107

2 Modeling and Prediction

2-108

9 tokens: items are occasionally getting stuck in the scanner spools

10 tokens: loud rattling and banging sounds are coming from assembler pistons
5 tokens: fried capacitors in the assembler

4 tokens: mixer tripped the fuses

9 tokens: burst pipe in the constructing agent is spraying coolant

Create a single datastore that contains both the documents and the labels by creating
arrayDatastore objects, then combining them using the combine function.

dsDocumentsTrain = arrayDatastore(documentsTrain,QutputType="cell");
dsTTrain = arrayDatastore(TTrain,OutputType="cell");
dsTrain = combine(dsDocumentsTrain,dsTTrain);

Create an array datastore for the validation documents.
dsDocumentsValidation = arrayDatastore(documentsValidation,OutputType="cell");
Create Word Encoding

To input the documents into a BiLSTM network, use a word encoding to convert the documents into
sequences of numeric indices.

To create a word encoding, use the wordEncoding function.
enc = wordEncoding(documentsTrain)

enc =
wordEncoding with properties:

NumWords: 417
Vocabulary: ["items"

are "occasionally" "getting" "stuck" "in" "the"

Define Network

Define the BiLSTM network architecture. To input sequence data into the network, include a
sequence input layer and set the input size to 1. Next, include a word embedding layer of dimension
25 and the same number of words as the word encoding. Next, include a BiLSTM layer and set the
number of hidden units to 40. To use the BiLSTM layer for a sequence-to-label classification problem,
set the output mode to "last". Finally, add a fully connected layer with the same size as the number
of classes, and a softmax layer.

inputSize = 1;
embeddingDimension = 25;
numHiddenUnits = 40;

numWords = enc.NumWords;

layers = [
sequencelnputlLayer(inputSize)
wordEmbeddinglLayer (embeddingDimension, numWords)
bilstmLayer(numHiddenUnits,OutputMode="1ast")
fullyConnectedLayer(numClasses)
softmaxLayer]

layers =
5x1 Layer array with layers:

Classify Text Data Using Custom Training Loop

1 t Sequence Input Sequence input with 1 dimensions

2 t Word Embedding Layer Word embedding layer with 25 dimensions and 417 unique word:
3 n BiLSTM BiLSTM with 40 hidden units

4 t Fully Connected 4 fully connected layer

5 Y Softmax softmax

Convert the layer array to a dlnetwork object.
net = dlnetwork(layers)

net =
dlnetwork with properties:

Layers: [5x1 nnet.cnn.layer.Layer]
Connections: [4x2 table]
Learnables: [6x3 table]
State: [2x3 table]

InputNames: {'sequenceinput'}
OQutputNames: {'softmax'}
Initialized: 1

Define Model Loss Function

Create the function modelLoss, listed at the end of the example, that takes a dlnetwork object, a
mini-batch of input data with corresponding labels, and returns the loss and the gradients of the loss
with respect to the learnable parameters in the network.

Specify Training Options
Train for 30 epochs with a mini-batch size of 16.

numEpochs = 30;
miniBatchSize = 16;

Specify the options for Adam optimization. Specify an initial learn rate of 0.001 with a decay of 0.01,
gradient decay factor 0.9, and squared gradient decay factor 0.999.

initialLearnRate = 0.001;

decay = 0.01;

gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.999;

Train Model

Create a minibatchqueue object that processes and manages the mini-batches of data. For each
mini-batch:

* Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to convert documents to sequences and one-hot encode the labels. To pass the word
encoding to the mini-batch, create an anonymous function that takes two inputs.

* Format the predictors with the dimension labels "BTC" (batch, time, channel). The
minibatchqueue object, by default, converts the data to dlarray objects with underlying type
single.

* Train on a GPU if one is available. The minibatchqueue object, by default, converts each output
to gpuArray if a GPU is available. Using a GPU requires Parallel Computing Toolbox™ and a

2-109

2 Modeling and Prediction

2-110

supported GPU device. For information on supported devices, see “GPU Computing
Requirements” (Parallel Computing Toolbox).

mbq = minibatchqueue(dsTrain,
MiniBatchSize=miniBatchSize, ...
MiniBatchFcn=@(X,T) preprocessMiniBatch(X,T,enc),
MiniBatchFormat=["BTC" ""1);

Create a minibatchqueue object for the validation documents. For each mini-batch:

* Use the custom mini-batch preprocessing function preprocessMiniBatchPredictors (defined
at the end of this example) to convert documents to sequences. This preprocessing function does
not require label data. To pass the word encoding to the mini-batch, create an anonymous function
that takes one input only.

* Format the predictors with the dimension labels "BTC" (batch, time, channel). The
minibatchqueue object, by default, converts the data to dlarray objects with underlying type
single.

» To make predictions for all observations, return any partial mini-batches.

mbgValidation = minibatchqueue(dsDocumentsValidation,
MiniBatchSize=miniBatchSize,
MiniBatchFcn=@(X) preprocessMiniBatchPredictors(X,enc),
MiniBatchFormat="BTC",
PartialMiniBatch="return");

To easily calculate the validation loss, convert the validation labels to one-hot encoded vectors and
transpose the encoded labels to match the network output format.

TValidation
TValidation

onehotencode(TValidation,?2);
TValidation';

Initialize the training progress plot.

figure
C = colororder;
linelLossTrain = animatedline(Color=C(2,:));

linelLossValidation = animatedline(
LineStyle="--",
Marker="o", .
MarkerFaceColor="black");

ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")

grid on

Initialize the parameters for Adam.

trailingAvg = [];
trailingAvgSq = [];

Train the network. For each epoch, shuffle the data and loop over mini-batches of data. At the end of
each iteration, display the training progress. At the end of each epoch, validate the network using the
validation data.

For each mini-batch:

Classify Text Data Using Custom Training Loop

Convert the documents to sequences of integers and one-hot encode the labels.

Convert the data to dlarray objects with underlying type single and specify the dimension labels
"BTC" (batch, time, channel).

For GPU training, convert to gpuArray objects.

Evaluate the model loss and gradients using dlfeval and the modelLoss function.
Determine the learning rate for the time-based decay learning rate schedule.
Update the network parameters using the adamupdate function.

Update the training plot.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1l:numEpochs

% Shuffle data.
shuffle(mbq);

% Loop over mini-batches.
while hasdata(mbq)
iteration = iteration + 1;

% Read mini-batch of data.
[X,T] = next(mbq);

% Evaluate the model loss and gradients using dlfeval and the
% modelLoss function.
[loss,gradients] = dlfeval(@modelLoss,net,X,T);

% Determine learning rate for time-based decay learning rate schedule.
learnRate = initiallLearnRate/(1 + decay*iteration);

% Update the network parameters using the Adam optimizer.

[net,trailingAvg,trailingAvgSq] = adamupdate(net, gradients,
trailingAvg, trailingAvgSq, iteration, learnRate,
gradientDecayFactor, squaredGradientDecayFactor);

% Display the training progress.

D = duration(0,0,toc(start),Format="hh:mm:ss");

loss = double(loss);
addpoints(lineLossTrain,iteration, loss)
title("Epoch: " + epoch + ", Elapsed: " + string(D))
drawnow

% Validate network.

if iteration == 1 || ~hasdata(mbq)
[~,scoresValidation] = modelPredictions(net,mbqValidation,classes);
lossValidation = crossentropy(scoresValidation,TValidation);

% Update plot.
lossValidation = double(lossValidation);
addpoints(lineLossValidation,iteration, lossValidation)
drawnow

end

2-111

2 Modeling and Prediction

2-112

end
end
Epoch: 30, Elapsed: 00:03:47
1.5
1 -
&
=]
-
I
0.5 |
. o~
”I ‘ | M eee
D 1 1 i 1 1 1 1
0 100 200 300 400 500 600 700 800
Iteration
Test Model

Test the classification accuracy of the model by comparing the predictions on the validation set with
the true labels.

Classify the validation data using modelPredictions function, listed at the end of the example.

YNew = modelPredictions(net,mbgqValidation,classes);

To easily calculate the validation accuracy, convert the one-hot encoded validation labels to
categorical and transpose.

TValidation = onehotdecode(TValidation,classes,1)"';
Evaluate the classification accuracy.

accuracy = mean(YNew == TValidation)

accuracy = 0.8854

Predict Using New Data

Classify the event type of three new reports. Create a string array containing the new reports.

reportsNew = [
"Coolant is pooling underneath sorter."

Classify Text Data Using Custom Training Loop

"Sorter blows fuses at start up."
"There are some very loud rattling sounds coming from the assembler."];

Preprocess the text data using the preprocessing steps as the training documents.

documentsNew = preprocessText(reportsNew);
dsNew = arrayDatastore(documentsNew,OutputType="cell");

Create a minibatchqueue object that processes and manages the mini-batches of data. For each
mini-batch:

* Use the custom mini-batch preprocessing function preprocessMiniBatchPredictors (defined
at the end of this example) to convert documents to sequences. This preprocessing function does
not require label data. To pass the word encoding to the mini-batch, create an anonymous function
that takes one input only.

» Format the predictors with the dimension labels "BTC" (batch, time, channel). The
minibatchqueue object, by default, converts the data to dlarray objects with underlying type
single.

» To make predictions for all observations, return any partial mini-batches.
mbgNew = minibatchqueue(dsNew,

MiniBatchSize=miniBatchSize,

MiniBatchFcn=@(X) preprocessMiniBatchPredictors(X,enc),

MiniBatchFormat="BTC",
PartialMiniBatch="return");

Classify the text data using modelPredictions function, listed at the end of the example and find
the classes with the highest scores.

YNew = modelPredictions(net,mbgNew, classes)
YNew = 3x1 categorical
Leak
Electronic Failure
Mechanical Failure
Supporting Functions
Text Preprocessing Function

The function preprocessText performs these steps:

1 Tokenize the text using tokenizedDocument.
2 Convert the text to lowercase using lower.
3 Erase the punctuation using erasePunctuation.

function documents = preprocessText(textData)

% Tokenize the text.
documents = tokenizedDocument (textData);

% Convert to lowercase.
documents = lower(documents);

% Erase punctuation.

2-113

2 Modeling and Prediction

2-114

documents = erasePunctuation(documents);
end
Mini-Batch Preprocessing Function

The preprocessMiniBatch function converts a mini-batch of documents to sequences of integers
and one-hot encodes label data.

function [X,T] = preprocessMiniBatch(dataX,dataT,enc)

% Preprocess predictors.
= preprocessMiniBatchPredictors(dataX,enc);

>

Extract labels from cell and concatenate.
= cat(1l,dataT{l:end});

— o°

One-hot encode labels.
= onehotencode(T,2);

— o°

Transpose the encoded labels to match the network output.
=T';

— o°

end
Mini-Batch Predictors Preprocessing Function

The preprocessMiniBatchPredictors function converts a mini-batch of documents to sequences
of integers.

function X = preprocessMiniBatchPredictors(dataX,enc)

% Extract documents from cell and concatenate.
documents = cat(4,dataxXx{l:end});

% Convert documents to sequences of integers.
X = doc2sequence(enc,documents);

X = cat(1,X{:});

end

Model Loss Function

The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with
corresponding target labels T and returns the gradients of the loss with respect to the learnable
parameters in net, and the loss. To compute the gradients automatically, use the dlgradient
function.

function [loss,gradients] = modelLoss(net,X,T)
Y = forward(net,X);

loss = crossentropy(Y,T);

gradients = dlgradient(loss,net.Learnables);

end

Classify Text Data Using Custom Training Loop

Model Predictions Function

The modelPredictions function takes a dlnetwork object net, a mini-batch queue, and outputs
the model predictions and scores by iterating over mini-batches in the queue.

function [predictions,scores] = modelPredictions(net,mbq,classes)

% Initialize predictions.
predictions = [];
scores = [];

% Reset mini-batch queue.
reset(mbq);

% Loop over mini-batches.
while hasdata(mbq)

end

next(mbq) ;

Make predictions.
= predict(net,X);

scores = [scores Y];

Y = onehotdecode(Y,classes,1)"';
predictions = [predictions; Y];
end

See Also
wordEmbeddinglLayer | tokenizedDocument | LstmLayer | doc2sequence |
sequencelInputlLayer |wordcloud | dlfeval | dlgradient | dlarray

Related Examples

“Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)
“Classify Text Data Using Deep Learning” on page 2-90

“Create Simple Text Model for Classification” on page 2-2

“Analyze Text Data Using Topic Models” on page 2-13

“Analyze Text Data Using Multiword Phrases” on page 2-7

“Train a Sentiment Classifier” on page 2-71

“Sequence Classification Using Deep Learning” (Deep Learning Toolbox)

“Deep Learning in MATLAB” (Deep Learning Toolbox)

2-115

2 Modeling and Prediction

Multilabel Text Classification Using Deep Learning

2-116

This example shows how to classify text data that has multiple independent labels.

For classification tasks where there can be multiple independent labels for each observation—for
example, tags on an scientific article—you can train a deep learning model to predict probabilities for
each independent class. To enable a network to learn multilabel classification targets, you can
optimize the loss of each class independently using binary cross-entropy loss.

This example defines a deep learning model that classifies subject areas given the abstracts of
mathematical papers collected using the arXiv API [1]. The model consists of a word embedding and
GRU, max pooling operation, fully connected, and sigmoid operations.

To measure the performance of multilabel classification, you can use the labeling F-score [2]. The
labeling F-score evaluates multilabel classification by focusing on per-text classification with partial
matches. The measure is the normalized proportion of matching labels against the total number of
true and predicted labels.

This example defines the following model:

* A word embedding that maps a sequence of words to a sequence of numeric vectors.

* A GRU operation that learns dependencies between the embedding vectors.

* A max pooling operation that reduces a sequence of feature vectors to a single feature vector.
* A fully connected layer that maps the features to the binary outputs.

* A sigmoid operation for learning the binary cross entropy loss between the outputs and the target
labels.

This diagram shows a piece of text propagating through the model architecture and outputting a
vector of probabilities. The probabilities are independent, so they need not sum to one.

Multilabel Text Classification Using Deep Learning

0.9 0.3 0.02 0.65
Sigmoid Sigmoid Sigmoid Sigmoid
A A A A

Fully Connect
A

Max Pooling

GRU

A

A A A A A

Embedding | | Embedding | | Embedding Embedding | | Embedding| | Embedding

1

In

1 1 1 1)

this paper vee impressive results

Import Text Data

Import a set of abstracts and category labels from math papers using the arXiv API. Specify the
number of records to import using the importSize variable.

importSize = 50000;
Create a URL that queries records with set "math" and metadata prefix "arXiv".

url = "https://export.arxiv.org/oai2?verb=ListRecords" + ...
"&set=math" + ...
"&metadataPrefix=arXiv";

Extract the abstract text, category labels, and the resumption token returned by the query URL using
the parseArXivRecords function which is attached to this example as a supporting file. To access
this file, open this example as a live script. Note that the arXiv API is rate limited and requires
waiting between multiple requests.

[textData, labelsAll, resumptionToken] = parseArXivRecords(url);

Iteratively import more chunks of records until the required amount is reached, or there are no more
records. To continue importing records from where you left off, use the resumption token from the
previous result in the query URL. To adhere to the rate limits imposed by the arXiv API, add a delay
of 20 seconds before each query using the pause function.

while numel(textData) < importSize
if resumptionToken == ""

break
end

2-117

2 Modeling and Prediction

2-118

url = "https://export.arxiv.org/oai2?verb=ListRecords" + ...
"&resumptionToken=" + resumptionToken;

pause(20)
[textDataNew, labelsNew, resumptionToken] = parseArXivRecords(url);

textData = [textData; textDataNew];
labelsAll = [labelsAll; labelsNew];
end

Preprocess Text Data

Tokenize and preprocess the text data using the preprocessText function, listed at the end of the
example.

documentsAll = preprocessText(textData);
documentsAll(1:5)

ans =
5x1 tokenizedDocument:

72 tokens: describe new algorithm (k,ℓ) pebble game color obtain characterization famil
22 tokens: show determinant stirling cycle number count unlabeled acyclic singlesource autom
18 tokens: paper show compute $\lambda {\alpha}$ norm alpha dyadic grid result consequence d
62 tokens: partial cube isometric subgraphs hypercubes structure graph define mean semicubes
29 tokens: paper present algorithm compute hecke eigensystems hilbertsiegel cusp form real q

Remove labels that do not belong to the "math" set.

for 1 = 1l:numel(labelsAll)
labelsAll1{i} = labelsAll{i}(startsWith(labelsAll{i}, "math."));
end

Visualize some of the classes in a word cloud. Find the documents corresponding to the following:

* Abstracts tagged with "Combinatorics" and not tagged with "Statistics Theory"
» Abstracts tagged with "Statistics Theory" and not tagged with "Combinatorics™
* Abstracts tagged with both "Combinatorics" and "Statistics Theory"

Find the document indices for each of the groups using the ismember function.

idxCO cellfun(@(lbls) ismember("math.C0",1lbls) && ~ismember("math.ST",1lbls), labelsAll);
1dxST cellfun(@(lbls) ismember("math.ST",1lbls) && ~ismember("math.C0",1lbls), labelsAll);
1dxCOST = cellfun(@(lbls) ismember("math.C0",1lbls) && ismember("math.ST",lbls), labelsAll);

Visualize the documents for each group in a word cloud.

figure

subplot(1,3,1)
wordcloud(documentsAll(idxCO0));
title("Combinatorics")

subplot(1,3,2)
wordcloud(documentsAll(idxST));
title("Statistics Theory")

subplot(1,3,3)

Multilabel Text Classification Using Deep Learning

wordcloud(documentsAll(idxCOST));

title("Both")

Combinatorics

CaOmanaRara
ek SEpUETION
. foemuda

|:4||'lrl.r|:| ;IIU!:IlElrn
== polynomial
rrmad thar =
.. Paper

“ prove study
PWO s
= Sth at

ciaas CA5E alge bra’

395 | gW'E bound

esamem randam g nincius

-graph--

nEw onder

‘number

vertex finite Jm“
== result =

by riu

pawn
avary SE r_'n'_ﬂa"

dery e AT P

function =
g gﬂ] u p e
CONJECIUNe i
:-"05-:—'1'3'
[par i on

]

=

port i b

View the number of classes.

Statistics Theory

Tl

- ruurmnber

cunbrjar -
- estlrr'amn
probabding stud'_.r btz

estimate rate
et PTODIEMY
e poct PrOPOSE
sampla SROW frages ¥

- fum:llnn i
estlmatnr

:-:I 5] \'..'!"".Ld eI ill—..:-l
distribution

bhasa provcs
randomEsult 2=y
vammE Qrocess
gn.na meth&d e
oondd ion paper

dgoitm | e

para I'I"{.‘T{.‘F kg

approach B QReEI 0N
asymplotlic

" procedure

T i

classNames = unique(cat(l,labelsAll{:}));
numClasses = numel(classNames)
numClasses = 32

Fau B
. astimata
(=== T pape r'\-l'lll
asymplotic - Staksl c

random_=.
- show
— modelii

cass " §et 'I"‘Cfﬂ

Tgraph S
matrlx

bamsu -

C-l:lbbr:-:ﬂ

-- Ma rl‘:u::wr
~e== table.-

sult, "o b

nimber glve EI'I".I"Q,I'

Ol B larga

= bound

ge"e ral sum
pattern .
a k_prrlhm

C O Mgy

dyrermial

Visualize the number of per-document labels using a histogram.

labelCounts = cellfun(@numel, labelsAll);

figure
histogram(labelCounts)
xLlabel("Number of Labels")
ylabel("Frequency")
title("Label Counts")

2-119

2 Modeling and Prediction

2-120

- - 1{.4 Label Counts

2.5

Frequency
oS]

=&
tn

0.5

9 2 3 4 5 6 7 B
Mumber of Labels

Prepare Text Data for Deep Learning

Partition the data into training and validation partitions using the cvpartition function. Hold out
10% of the data for validation by setting the HoldOut option to 0.1.

cvp = cvpartition(numel(documentsAll),HoldOut=0.1);
documentsTrain = documentsAll(training(cvp));
documentsValidation = documentsAll(test(cvp));

labelsTrain = labelsAll(training(cvp));
labelsValidation = labelsAll(test(cvp));

Create a word encoding object that encodes the training documents as sequences of word indices.
Specify a vocabulary of the 5000 words by setting the Order option to "frequency", and the
MaxNumWords option to 5000.

enc = wordEncoding(documentsTrain,Order="frequency",MaxNumWords=5000)

enc =
wordEncoding with properties:

NumWords: 5000
Vocabulary: [1x5000 string]

To improve training, use the following techniques:

Multilabel Text Classification Using Deep Learning

1 When training, truncate the documents to a length that reduces the amount of padding used and
does not does discard too much data.

2 Train for one epoch with the documents sorted by length in ascending order, then shuffle the
data each epoch. This technique is known as sortagrad.

To choose a sequence length for truncation, visualize the document lengths in a histogram and
choose a value that captures most of the data.

documentLengths = doclength(documentsTrain);

figure
histogram(documentLengths)
xlabel("Document Length")
ylabel("Frequency")
title("Document Lengths")

Document Lengths
2500 T T T T

2000

1500

Frequency

1000

500

0 50 100 150 200
Document Length

Most of the training documents have fewer than 175 tokens. Use 175 tokens as the target length for
truncation and padding.

maxSequencelLength = 175;
To use the sortagrad technique, sort the documents by length in ascending order.
[~,1idx] = sort(documentLengths);

documentsTrain = documentsTrain(idx);
labelsTrain = labelsTrain(idx);

2-121

2 Modeling and Prediction

2-122

Define and Initialize Model Parameters

Define the parameters for each of the operations and include them in a struct. Use the format
parameters.OperationName.ParameterName, where parameters is the struct,
OperationName is the name of the operation (for example "fc"), and ParameterName is the name
of the parameter (for example, "Weights").

Create a struct parameters containing the model parameters. Initialize the bias with zeros. Use the
following weight initializers for the operations:

* For the embedding, initialize the weights using the initializeGaussian function.

» For the GRU operation, initialize the weights and bias using the initializeGlorot and
initializeZeros functions, respectively.

* For the fully connect operation, initialize the weights and bias using the initializeGaussian
and initializeZeros functions, respectively.

The initialization functions initializeGlorot, initializeGaussian, and initializeZeros
are attached to the example as supporting files. To access these functions, open the example as a live
script.

Initialize the learnable parameters for the embedding.

embeddingDimension = 300;
numHiddenUnits = 250;
inputSize = enc.NumWords + 1;

parameters = struct;

sz [embeddingDimension inputSize];

mu 0;

sigma = 0.01;

parameters.emb.Weights = initializeGaussian(sz,mu,sigma);

Initialize the learnable parameters for the GRU operation using.

sz = [3*numHiddenUnits embeddingDimension];

numOut = 3*numHiddenUnits;

numIn = embeddingDimension;

parameters.gru.InputWeights = initializeGlorot(sz,numOut,numIn);

sz = [3*numHiddenUnits numHiddenUnits];

numOut = 3*numHiddenUnits;

numIn = numHiddenUnits;

parameters.gru.RecurrentWeights = initializeGlorot(sz,numOut,numIn);

sz = [3*numHiddenUnits 1];
parameters.gru.Bias = initializeZeros(sz);

Initialize the learnable parameters for the fully connect operation.

sz = [numClasses numHiddenUnits];
mu = 0;
sigma = 0.01;

parameters.fc.Weights = initializeGaussian(sz,mu,sigma);

sz = [numClasses 1];
parameters.fc.Bias = initializeZeros(sz);

Multilabel Text Classification Using Deep Learning

View the parameters struct.
parameters
parameters = struct with fields:

emb: [1x1 struct]

gru: [1x1 struct]

fc: [1x1 struct]
View the parameters for the GRU operation.
parameters.gru
ans = struct with fields:
InputWeights: [750x300 dlarray]

RecurrentWeights: [750x250 dlarray]
Bias: [750x1 dlarray]

Define Model Function

Create the function model, listed at the end of the example, which computes the outputs of the deep
learning model described earlier. The function model takes as input the input data and the model
parameters. The network outputs the predictions for the labels.

Define Model Loss Function

Create the function modelLoss, listed at the end of the example, which takes as input a mini-batch of
input data and the corresponding targets, and returns the loss, the gradients of the loss with respect
to the learnable parameters, and the network outputs.

Specify Training Options
Train for 5 epochs with a mini-batch size of 256.

numEpochs = 5;
miniBatchSize = 256;

Train using the Adam optimizer, with a learning rate of 0.01, and specify gradient decay and squared
gradient decay factors of 0.5 and 0.999, respectively.

learnRate = 0.01;

gradientDecayFactor = 0.5;

squaredGradientDecayFactor = 0.999;

Clip the gradients with a threshold of 1 using L, norm gradient clipping.
gradientThreshold = 1;

To convert a vector of probabilities to labels, use the labels with probabilities higher than a specified
threshold. Specify a label threshold of 0.5.

labelThreshold = 0.5;

Validate the network every epoch.

2-123

2 Modeling and Prediction

2-124

numObservationsTrain = numel(documentsTrain);
numIterationsPerEpoch = floor(numObservationsTrain/miniBatchSize);
validationFrequency = numIterationsPerEpoch;

Train Model
Initialize the training progress plot. Create animated lines for the F-score and the loss.

figure
C = colororder;

subplot(2,1,1)
lineFScoreTrain = animatedline(Color=C(1,:));
lineFScoreValidation = animatedline(
LineStyle="--",
Marker="o0",
MarkerFaceColor="black");
ylim([0 1])
xlabel("Iteration")
ylabel("Labeling F-Score")
grid on

subplot(2,1,2)
linelLossTrain = animatedline(Color=C(2,:));
linelLossValidation = animatedline(
LineStyle="--",
Marker="o0",
MarkerFaceColor="black");
ylim([0 inf])
xlabel("Iteration")
ylabel("Loss")
grid on

Initialize parameters for the Adam optimizer.

trailingAvg = [];
trailingAvgSq = [];

Prepare the validation data. Create a one-hot encoded matrix where non-zero entries correspond to
the labels of each observation.

numObservationsValidation = numel(documentsValidation);
TValidation = zeros(numClasses, numObservationsValidation,"single");
for i = 1l:numObservationsValidation
[~,idx] = ismember(labelsValidation{i}, classNames);
TValidation(idx,i) = 1;
end

Train the model using a custom training loop.

For each epoch, loop over mini-batches of data. At the end of each epoch, shuffle the data. At the end
of each iteration, update the training progress plot.

For each mini-batch:

* Convert the documents to sequences of word indices and convert the labels to dummy variables.

» Convert the sequences to dlarray objects with underlying type single and specify the dimension
labels "BTC" (batch, time, channel).

Multilabel Text Classification Using Deep Learning

Train on a GPU if one is available. This requires Parallel Computing Toolbox™ . Using a GPU
requires Parallel Computing Toolbox™ and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

For GPU training, convert to gpuArray objects.

Evaluate the model loss and gradients using dlfeval and the modelLoss function.
Clip the gradients.

Update the network parameters using the adamupdate function.

If necessary, validate the network using the modelPredictions function, listed at the end of the
example.

Update the training plot.

iteration = 0;
start = tic;

% Loop over epochs.
for epoch = 1l:numEpochs

% Loop over mini-batches.
for i = l:numIterationsPerEpoch
iteration = iteration + 1;
idx = (i-1)*miniBatchSize+1:i*miniBatchSize;

% Read mini-batch of data and convert the labels to dummy
% variables.

documents = documentsTrain(idx);

labels = labelsTrain(idx);

% Convert documents to sequences.
len = min(maxSequencelLength,max(doclength(documents)));
X = doc2sequence(enc,documents,
PaddingValue=inputSize,
Length=1en);
= cat(1,X{:});

>

Dummify labels.
= zeros(numClasses,miniBatchSize, "single");
or j = 1l:miniBatchSize
[~,1dx2] = ismember(labels{j},classNames);
T(idx2,j) = 1;
end

—+ — o°

% Convert mini-batch of data to dlarray.
X = dlarray(X,"BTC");

% If training on a GPU, then convert data to gpuArray.
if canUseGPU

X = gpuArray(X);
end

% Evaluate the model loss, gradients, and predictions using dlfeval and the
% modelLoss function.
[loss,gradients,Y] = dlfeval(@modelLoss,X,T,parameters);

% Gradient clipping.
gradients = dlupdate(@(g) thresholdL2Norm(g,gradientThreshold),gradients);

2-125

2 Modeling and Prediction

% Update the network parameters using the Adam optimizer.
[parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients,
trailingAvg,trailingAvgSq,iteration, learnRate,
gradientDecayFactor, squaredGradientDecayFactor);

% Display the training progress.

subplot(2,1,1)

D = duration(0,0,toc(start),Format="hh:mm:ss");
title("Epoch: " + epoch + ", Elapsed: " + string(D))

% Loss.
loss = double(loss);
addpoints(linelLossTrain,iteration, loss)

% Labeling F-score.

Y =Y > labelThreshold;

score = labelingFScore(Y,T);
addpoints(lineFScoreTrain,iteration,double(gather(score)))

drawnow

% Display validation metrics.
if iteration == 1 || mod(iteration,validationFrequency) ==
YValidation = modelPredictions(parameters,enc,documentsValidation,miniBatchSize, maxS¢

% Loss.
lossValidation = crossentropy(YValidation,TValidation,
TargetCategories="independent",
DataFormat="CB");
lossValidation = double(lossValidation);
addpoints(linelLossValidation,iteration, lossValidation)

% Labeling F-score.

YValidation = YValidation > labelThreshold;
score = labelingFScore(YValidation,TValidation);
score = double(score);
addpoints(lineFScoreValidation,iteration,score)

drawnow
end
end

% Shuffle data.
idx = randperm(numObservationsTrain);
documentsTrain = documentsTrain(idx);
labelsTrain = labelsTrain(idx);

end

2-126

Multilabel Text Classification Using Deep Learning

Epoch: 5, Elapsed: 00:34:11
_ Wyﬂwmmﬂw&&ww
e

Labeling F-Score
=
o

0 100 200 300 400 500 &00 700 Bo0 a00
Iteration
20F
151
b
S10}f
*
] -“'t.__ e
e T e el el e MY i
U 1 1 1 1 1 1 1 1 i
0 100 200 300 400 500 &00 700 Bo0 400
Iteration
Test Model

To make predictions on a new set of data, use the modelPredictions function, listed at the end of
the example. The modelPredictions function takes as input the model parameters, a word
encoding, and an array of tokenized documents, and outputs the model predictions corresponding to
the specified mini-batch size and the maximum sequence length.

YValidation = modelPredictions(parameters,enc,documentsValidation,miniBatchSize,maxSequencelLengtl

To evaluate the performance, calculate the labeling F-score using the labelingFScore function,
listed at the end of the example. The labeling F-score evaluates multilabel classification by focusing
on per-text classification with partial matches. To convert the network outputs to an array of labels,
find the labels with scores higher than the specified label threshold.

score = labelingFScore(YValidation > labelThreshold,TValidation)

score = single
0.5663

View the effect of the labeling threshold on the labeling F-score by trying a range of values for the
threshold and comparing the results.

thr = linspace(0,1,10);
score = zeros(size(thr));
for i = l:numel(thr)
YPredValidationThr = YValidation >= thr(i);
score(i) = labelingFScore(YPredValidationThr,TValidation);

2-127

2 Modeling and Prediction

end

figure

plot(thr,score)
xline(labelThreshold, "r--");
xlabel("Threshold")

ylabel("Labeling F-Score")
title("Effect of Labeling Threshold")

Effect of Labeling Threshold
D? T T T T T T T T T
|
|
0.6 | 1
|II -hl'“
II| | HH
05 | | ~ -
|
o |
o | |
i |
0 04r | | 1
w | I
[y} { [
= f
© 03[| ' 1
e | [
[s) f
- f |
02/ | 1
III |
01 ' 1
|
|
D i i i i | i i i i
0 01 02 03 04 05 06 07 08 09 1
Threshold

Visualize Predictions
To visualize the correct predictions of the classifier, calculate the numbers of true positives. A true

positive is an instance of a classifier correctly predicting a particular class for an observation.

YValidation > labelThreshold;

Y=
T = TValidation;
numTruePositives = sum(T & Y,2);
= sum(T,2);
./ numObservationsPerClass;

numObservationsPerClass
truePositiveRates numTruePositives
Visualize the numbers of true positives for each class in a histogram.

figure
= extractdata(truePositiveRates);

truePositiveRates
sort(truePositiveRates, "descend");

[~,idx] =
histogram(Categories=classNames(idx),BinCounts=truePositiveRates(idx))

2-128

Multilabel Text Classification Using Deep Learning

xlabel("Category")
ylabel("True Positive Rate")
title("True Positive Rates")

True Positive Rates

D_g T

True Fositive Rate

FEOILFALFOLOFRFEFOLS >0 L D=Ll ==

SLo0uE0CIO0ZOEL0OL I00EZNILN XY

HEEEScEEEcECcEEEEEEcESEESESEEC

R R R A R = R R R R

EECEECECECELCEECEEECEEREEEEE
Category

math .M
math.CT
math . HC
math.CA
math .G

Visualize the instances where the classifier predicts incorrectly by showing the distribution of true
positives, false positives, and false negatives. A false positive is an instance of a classifier assigning a
particular incorrect class to an observation. A false negative is an instance of a classifier failing to

assign a particular correct class to an observation.

Create a confusion matrix showing the true positive, false positive, and false negative counts:

* For each class, display the true positive counts on the diagonal.

* For each pair of classes (i,j), display the number of instances of a false positive for j when the

instance is also a false negative fori.
That is, the confusion matrix with elements given by:

numTruePositives(i), ifi=j

TPEN;; =
lJ {numFalsePositives(j|iis a false negative), if i # j
Calculate the false negatives and false positives.

falseNegatives
falsePositives

T & ~Y;
~T &Y;

Calculate the off-diagonal elements.

2-129

2 Modeling and Prediction

2-130

falseNegatives = permute(falseNegatives,[3 2 1]);
numConditionalFalsePositives = sum(falseNegatives & falsePositives, 2);
numConditionalFalsePositives = squeeze(numConditionalFalsePositives);

tpfnMatrix = numConditionalFalsePositives;

Set the diagonal elements to the true positive counts.

idxDiagonal = 1l:numClasses+l:numClasses”2;
tpfnMatrix(idxDiagonal) = numTruePositives;

Visualize the true positive and false positive counts in a confusion matrix using the confusionchart
function and sort the matrix such that the elements on the diagonal are in descending order.

figure

tpfnMatrix = extractdata(tpfnMatrix);

cm = confusionchart(tpfnMatrix,classNames);
sortClasses(cm, "descending-diagonal");
title("True Positives, False Positives")

n=l

True Positives, False Positives

3338

vk}
=1k

= ; _3:3:.3_333:33.33.:’3.
0y =t 0 g e A £ 10 (g) ey
ZOZ G U O—) = D n————0 00T

e

i —,

B0 B o oy o o D

=

True Class
3333333333333333333333333

e e e e

O3 33333

0 fy B B o G0 B By

e

BB

oo
1
==

rmat

mag

ma
LrOoFOLOFFFFYSrs>0<<OR0<O0L<ORFZ0S
Elg - O<0Z0NEOQOLOOO0ELIIZnUOEXU0I0
CCEcEScccCcCcfcoc o ccccCSccc e S oo
R R b
FEEECECECEEEEEELEELEEEEEEEEEREEEE o

Predicted Class

To view the matrix in more detail, open this example as a live script and open the figure in a new
window.

Preprocess Text Function

The preprocessText function tokenizes and preprocesses the input text data using the following
steps:

Multilabel Text Classification Using Deep Learning

gua A W N

Tokenize the text using the tokenizedDocument function. Extract mathematical equations as a
single token using the RegularExpressions option by specifying the regular expression "\
$.*?\$", which captures text appearing between two "$" symbols.

Erase the punctuation using the erasePunctuation function.

Convert the text to lowercase using the Lower function.

Remove the stop words using the removeStopWords function.

Lemmatize the text using the normalizeWords function with the Style option set to "lemma".

function documents = preprocessText(textData)

% Tokenize the text.

regularExpressions = table;
regularExpressions.Pattern = "\$.*?\$";
regularExpressions.Type = "equation";

documents = tokenizedDocument(textData,RegularExpressions=regularExpressions);

% Erase punctuation.
documents = erasePunctuation(documents);

% Convert to lowercase.
documents = lower(documents);

% Lemmatize.
documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents,Style="1lemma");

% Remove stop words.
documents = removeStopWords(documents);

% Remove short words.
documents = removeShortWords(documents,?2);

end

Model Function

The function model takes as input the input data X and the model parameters parameters, and
returns the predictions for the labels.

function Y = model(X,parameters)

% Embedding
weights = parameters.emb.Weights;
X = embed(X,weights);

% GRU

inputWeights = parameters.gru.InputWeights;
recurrentWeights = parameters.gru.RecurrentWeights;
bias = parameters.gru.Bias;

numHiddenUnits = size(inputWeights,1)/3;
hiddenState = dlarray(zeros([numHiddenUnits 1]));

Y =

gru(X,hiddenState,inputWeights, recurrentWeights,bias);

2-131

2 Modeling and Prediction

2-132

% Max pooling along time dimension
Y = max(Y,[],3);

% Fully connect

weights = parameters.fc.Weights;
bias = parameters.fc.Bias;

Y = fullyconnect(Y,weights,bias);

% Sigmoid

Y = sigmoid(Y);

end

Model Loss Function

The modelLoss function takes as input a mini-batch of input data X with corresponding targets T
containing the labels and returns the loss, the gradients of the loss with respect to the learnable
parameters, and the network outputs.

function [loss,gradients,Y] = modelLoss(X,T,parameters)
Y = model (X, parameters);

loss = crossentropy(Y,T,TargetCategories="independent");
gradients = dlgradient(loss,parameters);

end

Model Predictions Function

The modelPredictions function takes as input the model parameters, a word encoding, an array of
tokenized documents, a mini-batch size, and a maximum sequence length, and returns the model
predictions by iterating over mini-batches of the specified size.

function Y = modelPredictions(parameters,enc,documents,miniBatchSize,maxSequencelLength)
inputSize = enc.NumWords + 1;

numObservations = numel(documents);
numIterations = ceil(numObservations / miniBatchSize);

numFeatures = size(parameters.fc.Weights,1);
Y = zeros(numFeatures,numObservations,"like",parameters.fc.Weights);

for i = l:numIterations
idx = (i-1)*miniBatchSize+1l:min(i*miniBatchSize,numObservations);
len = min(maxSequencelLength,max(doclength(documents(idx))));
X = doc2sequence(enc,documents(idx),
PaddingValue=inputSize,
Length=1len);
X = cat(1,X{:});
X = dlarray(X,"BTC");

Y(:,idx) = model(X,parameters);

Multilabel Text Classification Using Deep Learning

end
end

Labeling F-Score Function

The labeling F-score function [2] evaluates multilabel classification by focusing on per-text
classification with partial matches. The measure is the normalized proportion of matching labels
against the total number of true and predicted labels given by

C
N 220 = 1YncTnc

Eg= l(Ync + Tnc)

1
N

’

n=1

where N and C correspond to the number of observations and classes, respectively, and Y and T
correspond to the predictions and targets, respectively.

function score = labelingFScore(Y,T)
numObservations = size(T,2);

scores = (2 * sum(Y .* T)) ./ sum(Y + T);
score = sum(scores) / numObservations;

end

Gradient Clipping Function

The thresholdL2Norm function scales the input gradients so that their L, norm values equal the
specified gradient threshold when the L, norm value of the gradient of a learnable parameter is
larger than the specified threshold.

function gradients = thresholdL2Norm(gradients,gradientThreshold)
gradientNorm = sqrt(sum(gradients(:).”2));
if gradientNorm > gradientThreshold

gradients = gradients * (gradientThreshold / gradientNorm);
end
end

References

1 arXiv. "arXiv APL." Accessed January 15, 2020. https://arxiv.org/help/api

2 Sokolova, Marina, and Guy Lapalme. "A Sytematic Analysis of Performance Measures for
Classification Tasks." Information Processing & Management 45, no. 4 (2009): 427-437.

See Also
tokenizedDocument | fullyconnect | dlupdate | adamupdate | dlarray | dlfeval |
dlgradient | wordEncoding | doc2sequence

Related Examples
. “Classify Text Data Using Deep Learning” on page 2-90

2-133

https://arxiv.org/help/api

2 Modeling and Prediction

. “Create Simple Text Model for Classification” on page 2-2
. “Deep Learning in MATLAB” (Deep Learning Toolbox)

2-134

Sequence-to-Sequence Translation Using Attention

Sequence-to-Sequence Translation Using Attention

This example shows how to convert decimal strings to Roman numerals using a recurrent sequence-
to-sequence encoder-decoder model with attention.

Recurrent encoder-decoder models have proven successful at tasks like abstractive text
summarization and neural machine translation. The model consists of an encoder which typically
processes input data with a recurrent layer such as LSTM, and a decoder which maps the encoded
input into the desired output, typically with a second recurrent layer. Models that incorporate
attention mechanisms into the models allows the decoder to focus on parts of the encoded input while
generating the translation.

D — X — G — I — <stop>
Hidden » 3
State d g
Decoder Decoder Decoder Decoder Decoder
Initial - o
Context d
AA A A A A
o Latent T T T J
" Representation r
<start>
Initial
Hidden —»{Encoder —» Encoder —»Encoder

State T T T

5 9 1

For the encoder model, this example uses a simple network consisting of an embedding followed by
an LSTM operation. Embedding is a method of converting categorical tokens into numeric vectors.

Latent
Representation

? Updated
—» LSTM —» Hidden
f State

Hidden
State

Embedding

f

Input

2-135

2 Modeling and Prediction

For the decoder model, this example uses a network that contains an LSTM operation and an
attention mechanism. The attention mechanism allows the decoder to attend to specific parts of the
encoder output.

Prediction

¢

Softmax

)

Fully Connect

+

Concatenate
A A
|
Luong
Dropout Attention
f il
, Updated
Hidden _of | g1\ > Hidden
State
T State
Concatenate
Context 2 —> Updated
Context
Embedding
Input Latent

Representation

Load Training Data

Download the decimal-Roman numeral pairs from " romanNumerals.csv".

filename = fullfile("romanNumerals.csv");

2-136

Sequence-to-Sequence Translation Using Attention

options = detectImportOptions(filename,
TextType="string", .
ReadVariableNames=false);

options.VariableNames ["Source" "Target"];

options.VariableTypes ["string" "string"];

data = readtable(filename,options);

Split the data into training and test partitions containing 50% of the data each.

idx = randperm(size(data,l),500);
dataTrain = data(idx,:);

dataTest = data;

dataTest(idx,:) = []1;

View some of the decimal-Roman numeral pairs.

head(dataTrain)
Source Target
"437" "CDXXXVII"
"431" "CDXXXI"
"102" "CII"
"862" "DCCCLXII"
"738" "DCCXXXVIII"
"527" "DXXVII"
"401" "CDI"
"184" " CLXXXIV"

Preprocess Data

Preprocess the text data using the transformText function, listed at the end of the example. The
transformText function preprocesses and tokenizes the input text for translation by splitting the
text into characters and adding start and stop tokens. To translate text by splitting the text into words
instead of characters, skip the first step.

startToken = "<start>";
stopToken = "<stop>";

strSource = dataTrain.Source;
documentsSource = transformText(strSource,startToken,stopToken);

Create a wordeEncoding object that maps tokens to a numeric index and vice-versa using a
vocabulary.

encSource = wordEncoding(documentsSource);

Using the word encoding, convert the source text data to numeric sequences.

sequencesSource = doc2sequence(encSource,documentsSource,PaddingDirection="none");
Convert the target data to sequences using the same steps.

strTarget = dataTrain.Target;

documentsTarget = transformText(strTarget,startToken,stopToken);

encTarget = wordEncoding(documentsTarget);
sequencesTarget = doc2sequence(encTarget,documentsTarget,PaddingDirection="none");

2-137

2 Modeling and Prediction

2-138

Sort the sequences by length. Training with the sequences sorted by increasing sequence length
results in batches with sequences of approximately the same sequence length and ensures smaller
sequence batches are used to update the model before longer sequence batches.

sequencelLengths = cellfun(@(sequence) size(sequence,2),sequencesSource);
[~,idx] = sort(sequencelLengths);

sequencesSource sequencesSource(idx)
sequencesTarget sequencesTarget (idx)

~e o~

Create arrayDatastore objects containing the source and target data and combine them using the
combine function.

sequencesSourceDs
sequencesTargetDs

arrayDatastore(sequencesSource,OutputType="same");
arrayDatastore(sequencesTarget,OutputType="same");

sequencesDs = combine(sequencesSourceDs,sequencesTargetDs);
Initialize Model Parameters

Initialize the model parameters. For both the encoder and decoder, specify an embedding dimension
of 128, an LSTM layer with 100 hidden units, and dropout layers with random dropout with
probability 0.05.

embeddingDimension = 128;
numHiddenUnits = 100;
dropout = 0.05;

Initialize Encoder Model Parameters

Initialize the weights of the encoding embedding using the Gaussian using the
initializeGaussian function which is attached to this example as a supporting file. Specify a
mean of 0 and a standard deviation of 0.01. To learn more, see “Gaussian Initialization” (Deep
Learning Toolbox).

inputSize = encSource.NumWords + 1;

sz = [embeddingDimension inputSize];

mu = 0;

sigma = 0.01;

parameters.encoder.emb.Weights = initializeGaussian(sz,mu,sigma);

Initialize the learnable parameters for the encoder LSTM operation:

* [Initialize the input weights with the Glorot initializer using the initializeGlorot function
which is attached to this example as a supporting file. To learn more, see “Glorot Initialization”
(Deep Learning Toolbox).

* [Initialize the recurrent weights with the orthogonal initializer using the initializeOrthogonal
function which is attached to this example as a supporting file. To learn more, see “Orthogonal
Initialization” (Deep Learning Toolbox).

* [Initialize the bias with the unit forget gate initializer using the initializeUnitForgetGate
function which is attached to this example as a supporting file. To learn more, see “Unit Forget
Gate Initialization” (Deep Learning Toolbox).

Initialize the learnable parameters for the encoder LSTM operation.

sz = [4*numHiddenUnits embeddingDimension];
numOut = 4*numHiddenUnits;

Sequence-to-Sequence Translation Using Attention

numIn = embeddingDimension;

parameters.encoder.lstm.InputWeights = initializeGlorot(sz,numQut,numIn);
parameters.encoder.lstm.RecurrentWeights = initializeOrthogonal([4*numHiddenUnits numHiddenUnits
parameters.encoder.lstm.Bias = initializeUnitForgetGate(numHiddenUnits);

Initialize Decoder Model Parameters

Initialize the weights of the encoding embedding using the Gaussian using the
initializeGaussian function. Specify a mean of 0 and a standard deviation of 0.01.

outputSize = encTarget.NumWords + 1;

sz = [embeddingDimension outputSize];

mu = 0;

sigma = 0.01;

parameters.decoder.emb.Weights = initializeGaussian(sz,mu,sigma);

Initialize the weights of the attention mechanism using the Glorot initializer using the
initializeGlorot function.

sz = [numHiddenUnits numHiddenUnits];

numOut = numHiddenUnits;

numIn = numHiddenUnits;

parameters.decoder.attention.Weights = initializeGlorot(sz,numOut,numIn);

Initialize the learnable parameters for the decoder LSTM operation:

* Initialize the input weights with the Glorot initializer using the initializeGlorot function.

* Initialize the recurrent weights with the orthogonal initializer using the initializeOrthogonal
function.

* Initialize the bias with the unit forget gate initializer using the initializeUnitForgetGate
function.

Initialize the learnable parameters for the decoder LSTM operation.

sz = [4*numHiddenUnits embeddingDimension+numHiddenUnits];
numOut = 4*numHiddenUnits;
numIn = embeddingDimension + numHiddenUnits;

parameters.decoder.lstm.InputWeights = initializeGlorot(sz,numQut,numIn);
parameters.decoder.lstm.RecurrentWeights = initializeOrthogonal([4*numHiddenUnits numHiddenUnits
parameters.decoder.lstm.Bias = initializeUnitForgetGate(numHiddenUnits);

Initialize the learnable parameters for the decoder fully connected operation:

* Initialize the weights with the Glorot initializer.
* Initialize the bias with zeros using the initializeZeros function which is attached to this
example as a supporting file. To learn more, see “Zeros Initialization” (Deep Learning Toolbox).

sz = [outputSize 2*numHiddenUnits];
numOut = outputSize;
numIn = 2*numHiddenUnits;

parameters.decoder.fc.Weights = initializeGlorot(sz,numQut,numIn);
parameters.decoder.fc.Bias = initializeZeros([outputSize 1]);

2-139

2 Modeling and Prediction

2-140

Define Model Functions

Create the functions modelEncoder and modelDecoder, listed at the end of the example, that
compute the outputs of the encoder and decoder models, respectively.

The modelEncoder function, listed in the Encoder Model Function on page 2-144 section of the
example, takes the input data, the model parameters, the optional mask that is used to determine the
correct outputs for training and returns the model outputs and the LSTM hidden state.

The modelDecoder function, listed in the Decoder Model Function on page 2-145 section of the
example, takes the input data, the model parameters, the context vector, the LSTM initial hidden
state, the outputs of the encoder, and the dropout probability and outputs the decoder output, the
updated context vector, the updated LSTM state, and the attention scores.

Define Model Loss Function

Create the function modelLoss, listed in the Model Loss Function on page 2-144 section of the
example, that takes the encoder and decoder model parameters, a mini-batch of input data and the
padding masks corresponding to the input data, and the dropout probability and returns the loss and
the gradients of the loss with respect to the learnable parameters in the models.

Specify Training Options
Train with a mini-batch size of 32 for 100 epochs with a learning rate of 0.001.
miniBatchSize = 32;

numEpochs = 100;
learnRate 0.001;

Initialize the options from Adam.

gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.999;

Train Model

Train the model using a custom training loop. Use minibatchqueue to process and manage mini-
batches of images during training. For each mini-batch:

* Use the custom mini-batch preprocessing function preprocessMiniBatch (defined at the end of
this example) to find the lengths of all sequence in the mini-batch and pad the sequences to the
same length as the longest sequence, for the source and target sequences, respectively.

* Permute the second and third dimensions of the padded sequences.

* Return the mini-batch variables unformatted dlarray objects with underlying data type single.
All other outputs are arrays of data type single.

* Train on a GPU if one is available. Return all mini-batch variables on the GPU if one is available.
Using a GPU requires Parallel Computing Toolbox™ and a supported GPU device. For information
on supported devices, see GPU Support by Release.

The minibatchqueue object returns four output arguments for each mini-batch: the source
sequences, the target sequences, the lengths of all source sequences in the mini-batch, and the
sequence mask of the target sequences.

numMiniBatchOutputs = 4;

Sequence-to-Sequence Translation Using Attention

mbq = minibatchqueue(sequencesDs,numMiniBatchOutputs, ...
MiniBatchSize=miniBatchSize,...
MiniBatchFcn=@(x,t) preprocessMiniBatch(x,t,inputSize,outputSize));

Initialize the values for the adamupdate function.

trailingAvg

=[]
trailingAvgSq =

[1;
Calculate the total number of iterations for the training progress monitor
numObservationsTrain = numel(sequencesSource);

numIterationsPerEpoch = ceil(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;

Initialize the training progress monitor. Because the timer starts when you create the monitor object,
make sure that you create the object close to the training loop.

monitor = trainingProgressMonitor (
Metrics="Loss",
Info="Epoch",
XLabel="Iteration");

Train the model. For each mini-batch:

* Read a mini-batch of padded sequences.

* Compute loss and gradients.

* Update the encoder and decoder model parameters using the adamupdate function.

* Update the training progress monitor.

* Stop training when the Stop property of the training progress monitor is true. The Stop
property of the training monitor changes to 1 when you click the stop button.

epoch = 0;
iteration = 0;

% Loop over epochs.
while epoch < numEpochs && ~monitor.Stop
epoch = epoch + 1;
reset(mbq);
% Loop over mini-batches.
while hasdata(mbq) && ~monitor.Stop
iteration = iteration + 1;
[X,T,sequenceLengthsSource,maskSequenceTarget] = next(mbq);
% Compute loss and gradients.
[loss,gradients] = dlfeval(@modelLoss,parameters,X,T,sequenceLengthsSource, ...
maskSequenceTarget,dropout);
% Update parameters using adamupdate.
[parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients,trailingAvg, tra.
iteration,learnRate,gradientDecayFactor, squaredGradientDecayFactor);

% Normalize loss by sequence length.

2-141

2 Modeling and Prediction

Loss

loss = loss ./ size(T,3);

% Update the training progress monitor.
recordMetrics(monitor,iteration,Loss=1l0ss);
updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
monitor.Progress = 100*iteration/numIterations;
end
end

Progress:

Time

Start time: 22-Jul-2022 13:39:45
Elapsed time: 00:11:10
Information

Epoch: 100 of 100

|_'; Export as Image |

0

2-142

200 400 BO0 a800 1000 1200 1400 1600
lteration

Generate Translations

To generate translations for new data using the trained model, convert the text data to numeric
sequences using the same steps as when training and input the sequences into the encoder-decoder
model and convert the resulting sequences back into text using the token indices.

Preprocess the text data using the same steps as when training. Use the transformText function,
listed at the end of the example, to split the text into characters and add the start and stop tokens.

strSource
strTarget

dataTest.Source;
dataTest.Target;

Translate the text using the modelPredictions function.

maxSequencelLength = 10;
delimiter = "";

strTranslated = translateText(parameters,strSource,maxSequencelLength,miniBatchSize,
encSource,encTarget,startToken, stopToken,delimiter);

Create a table containing the test source text, target text, and translations.

tbl = table;
tbl.Source = strSource;

Sequence-to-Sequence Translation Using Attention

tbl.Target =

strTarget;

tbl.Translated = strTranslated;

View a random selection of the translations.

idx = randperm(size(dataTest,1l),miniBatchSize);

tbl(idx, :)

ans=32x3 table
Source Target Translated
996" "CMXCVI" "CMMXCVI"
"576" "DLXXVI" "DCLXXVI"
"86" "LXXXVI" "DCCCLXV"
23" "XXITII" "CCCCXIII"
99" "XCIX" "CMMXIX"
478" "CDLXXVIII" "DCCCLXXVII"
"313" "CCCXIII" "CCCXIII"
"60" LX" "DLX"
"864" "DCCCLXIV" "DCCCLIV"
"280" "CCLXXX" "CCCCLX"
792" "DCCXCII" "DCCCIITI"
959" "CMLIX" "CMLXTI"
283" "CCLXXXIII" "CCCCLXXIII"
"356" "CCCLVI" "CCCccvr"
"534" "DXXXIV" "DCCXXIV"

"DCCXXI" "DCCCII"

||721||

Text Transformation Function

The transformText function preprocesses and tokenizes the input text for translation by splitting
the text into characters and adding start and stop tokens. To translate text by splitting the text into
words instead of characters, skip the first step.

function documents = transformText(str,startToken,stopToken)

str = strip(replace(str,""," "));

str = startToken + str + stopToken;

documents = tokenizedDocument(str,CustomTokens=[startToken stopToken]);
end

Mini-Batch Preprocessing Function

The preprocessMiniBatch function, described in the Train Model section of the example,
preprocesses the data for training. The function preprocesses the data using the following steps:

1 Determine the lengths of all source and target sequences in the mini-batch

2 Pad the sequences to the same length as the longest sequence in the mini-batch using the
padsequences function.

3 Permute the last two dimensions of the sequences

function [X,T,sequencelLengthsSource,maskTarget] = preprocessMiniBatch(sequencesSource, sequencesT:

2-143

2 Modeling and Prediction

2-144

sequencelLengthsSource = cellfun(@(x) size(x,2),sequencesSource);

X
X

padsequences (sequencesSource,2,PaddingValue=inputSize);
permute(X,[1 3 2]);

[T,maskTarget] = padsequences(sequencesTarget,2,PaddingValue=outputSize);
T = permute(T,[1 3 2]);
maskTarget = permute(maskTarget,[1l 3 2]);

end
Model Loss Function

The modelLoss function takes the encoder and decoder model parameters, a mini-batch of input
data and the padding masks corresponding to the input data, and the dropout probability and returns
the loss and the gradients of the loss with respect to the learnable parameters in the models.

function [loss,gradients] = modellLoss(parameters,X,T,...
sequencelLengthsSource,maskTarget,dropout)

% Forward through encoder.
[Z,hiddenState] = modelEncoder(parameters.encoder, X, sequencelLengthsSource);

% Decoder Output.

doTeacherForcing = rand < 0.5;

sequencelLength = size(T,3);

Y = decoderPredictions(parameters.decoder,Z,T,hiddenState,dropout, ...
doTeacherForcing, sequencelLength);

Masked loss.

Y(:,:,1:end-1);
extractdata(gather(T(:,:,2:end)));
onehotencode(T,1,ClassNames=1:size(Y,1));

— = <o
nnu

maskTarget
maskTarget

maskTarget(:,:,2:end);
repmat(maskTarget, [size(Y,1),1,1]);

loss = crossentropy(Y,T,Mask=maskTarget,Dataformat="CBT");

% Update gradients.
gradients = dlgradient(loss,parameters);

end
Encoder Model Function

The function modelEncoder takes the input data, the model parameters, the optional mask that is
used to determine the correct outputs for training and returns the model output and the LSTM
hidden state.

If sequencelengths is empty, then the function does not mask the output. Specify and empty value
for sequencelLengths when using the modelEncoder function for prediction.

function [Z,hiddenState] = modelEncoder(parameters,X,sequencelLengths)

% Embedding.
weights = parameters.emb.Weights;
Z = embed(X,weights,DataFormat="CBT");

Sequence-to-Sequence Translation Using Attention

% LSTM.

inputWeights = parameters.lstm.InputWeights;
recurrentWeights = parameters.lstm.RecurrentWeights;
bias = parameters.lstm.Bias;

numHiddenUnits = size(recurrentWeights, 2);
initialHiddenState = dlarray(zeros([numHiddenUnits 1]));
initialCellState = dlarray(zeros([numHiddenUnits 1]));

[Z,hiddenState] = lstm(Z,initialHiddenState,initialCellState,inputWeights,
recurrentWeights,bias,DataFormat="CBT");

% Masking for training.
if ~isempty(sequencelLengths)
miniBatchSize = size(Z,2);
for n = 1:miniBatchSize
hiddenState(:,n) = Z(:,n,sequenceLengths(n));
end
end

end
Decoder Model Function

The function modelDecoder takes the input data, the model parameters, the context vector, the
LSTM initial hidden state, the outputs of the encoder, and the dropout probability and outputs the
decoder output, the updated context vector, the updated LSTM state, and the attention scores.

function [Y,context,hiddenState,attentionScores] = modelDecoder(parameters,X, context,
hiddenState,Z,dropout)

% Embedding.
weights = parameters.emb.Weights;
X = embed(X,weights,DataFormat="CBT");

% RNN input.
sequencelLength = size(X,3);
Y = cat(1l, X, repmat(context,[1 1 sequenceLengthl]));

% LSTM.

inputWeights = parameters.lstm.InputWeights;
recurrentWeights = parameters.lstm.RecurrentWeights;
bias = parameters.lstm.Bias;

initialCellState = dlarray(zeros(size(hiddenState)));

[Y,hiddenState] = lstm(Y,hiddenState,initialCellState,
inputWeights, recurrentWeights,bias,DataFormat="CBT");

% Dropout.

mask = rand(size(Y),"like",Y) > dropout;

Y = Y.*mask;

% Attention.

weights = parameters.attention.Weights;

[context,attentionScores] = luongAttention(hiddenState,Z,weights);

2-145

2 Modeling and Prediction

2-146

% Concatenate.
Y = cat(l, Y, repmat(context,[1 1 sequenceLengthl]));

% Fully connect.

weights = parameters.fc.Weights;

bias = parameters.fc.Bias;

Y = fullyconnect(Y,weights,bias,DataFormat="CBT");

% Softmax.
Y = softmax(Y,DataFormat="CBT");

end
Luong Attention Function

The LuongAttention function returns the context vector and attention scores according to Luong
"general" scoring [1]. This is equivalent to dot-product attention with queries, keys, and values
specified as the hidden state, the weighted latent representation, and the latent representation,
respectively.

function [context,attentionScores] = luongAttention(hiddenState,Z,weights)

numHeads = 1;

queries = hiddenState;

keys = pagemtimes(weights,Z);
values = Z;

[context,attentionScores] = attention(queries, keys,values,numHeads,
Scale=1,
DataFormat="CBT");

end
Decoder Model Predictions Function

The decoderModelPredictions function returns the predicted sequence Y given the input
sequence, target sequence, hidden state, dropout probability, flag to enable teacher forcing, and the
sequence length.

function Y = decoderPredictions(parameters,Z,T,hiddenState,dropout,
doTeacherForcing, sequencelLength)

% Convert to dlarray.
T = dlarray(T);

% Initialize context.

miniBatchSize = size(T,2);

numHiddenUnits = size(Z,1);

context = zeros([numHiddenUnits miniBatchSizel], "like",Z);

if doTeacherForcing

% Forward through decoder.

Y = modelDecoder(parameters,T,context,hiddenState,Z,dropout);
else

% Get first time step for decoder.

decoderInput = T(:,:,1);

% Initialize output.

Sequence-to-Sequence Translation Using Attention

numClasses = numel(parameters.fc.Bias);
Y = zeros([numClasses miniBatchSize sequencelLength], "like",decoderInput);

% Loop over time steps.
for t = 1l:sequencelLength
% Forward through decoder.
[Y(:,:,t), context, hiddenState] = modelDecoder(parameters,decoderInput,context,
hiddenState,Z,dropout);

% Update decoder input.
[~, decoderInput] = max(Y(:,:,t),[]1,1);
end
end

end
Text Translation Function

The translateText function translates an array of text by iterating over mini-batches. The function
takes as input the model parameters, the input string array, a maximum sequence length, the mini-
batch size, the source and target word encoding objects, the start and stop tokens, and the delimiter
for assembling the output.

function strTranslated = translateText(parameters,strSource,maxSequencelLength,miniBatchSize,
encSource,encTarget,startToken, stopToken,delimiter)

% Transform text.
documentsSource = transformText(strSource,startToken,stopToken);
sequencesSource = doc2sequence(encSource,documentsSource,
PaddingDirection="right",
PaddingValue=encSource.NumWords + 1);

Convert to dlarray.
cat(3,sequencesSource{:});
permute(X,[1 3 2]);
dlarray(X);

X X X o°
LI 1|

[)

% Initialize output.
numObservations = numel(strSource);
strTranslated = strings(numObservations,1);

% Loop over mini-batches.

numIterations = ceil (numObservations / miniBatchSize);

for i = l:numIterations
idxMiniBatch = (i-1)*miniBatchSize+1:min(i*miniBatchSize,numObservations);
miniBatchSize = numel(idxMiniBatch);

% Encode using model encoder.
sequencelLengths = [];
[Z, hiddenState] = modelEncoder(parameters.encoder,X(:,idxMiniBatch, :),sequencelLengths);

% Decoder predictions.
doTeacherForcing = false;

dropout = 0;
decoderInput = repmat(word2ind(encTarget,startToken),[1 miniBatchSize]);
decoderInput = dlarray(decoderInput);

Y = decoderPredictions(parameters.decoder,Z,decoderInput,hiddenState,dropout,
doTeacherForcing, maxSequencelLength);

2-147

2 Modeling and Prediction

2-148

end

end

[~, idxPred] = max(extractdata(Y),[]1,1);

% Keep translating flag.
idxStop = word2ind(encTarget,stopToken);
keepTranslating = idxPred ~= idxStop;

% Loop over time steps.
t =1;
while t <= maxSequencelLength && any(keepTranslating(:,:,t))

% Update output.

newWords = ind2word(encTarget, idxPred(:,:,t))"';

idxUpdate = idxMiniBatch(keepTranslating(:,:,t));

strTranslated(idxUpdate) = strTranslated(idxUpdate) + delimiter + newWords(keepTranslatil

t=1t+ 1;
end

Bibliography

[1] Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. "Effective approaches to attention-
based neural machine translation." arXiv preprint arXiv:1508.04025 (2015).

See Also
word2ind | tokenizedDocument | wordEncoding | dlarray | adamupdate | dlupdate | dlfeval
| dlgradient | crossentropy | softmax | lstm | doc2sequence

More About

“Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)
“Prepare Text Data for Analysis” on page 1-11

“Analyze Text Data Using Topic Models” on page 2-13

“Classify Text Data Using Deep Learning” on page 2-90

“Classify Text Data Using Convolutional Neural Network” on page 2-98

“Train a Sentiment Classifier” on page 2-71

“Visualize Word Embeddings Using Text Scatter Plots” on page 3-8

Language Translation Using Deep Learning

Language Translation Using Deep Learning

This example shows how to train a German to English language translator using a recurrent
sequence-to-sequence encoder-decoder model with attention.

Recurrent encoder-decoder models have proven successful at tasks such as abstractive text
summarization and neural machine translation. These models consist of an encoder, which typically
processes input data with a recurrent layer such as an LSTM layer, and a decoder which maps the
encoded input into the desired output, typically also with a recurrent layer. Models that incorporate
attention mechanisms into the models allow the decoder to focus on parts of the encoded input while
generating the translation one time step at a time. This example implements Bahdanau attention [1]
on page 2-170 using the custom layer attentionlLayer, attached to this example as a supporting
file. To access this layer, open this example as a live script.

This diagram shows the structure of a language translation model. The input text, specified as a
sequence of words, is passed through the encoder, which outputs an encoded version of the input
sequence and a hidden state used to initialize the decoder state. The decoder makes predictions one
word at a time using previous prediction as input and also outputs update state and context values.

Wie heilen Sie ?
¢ ¢ ¢ ¢ Encoder
Encoder — <start> Output
Y Y 1 4 Y Y Y
Initial | 3 - . - S 3
Context
) Decoder Decoder Decoder Decoder Decoder Decoder
Hidden —> —r» > —> —»
State
What — is - your — name — ? — <stop=

For more information and the details about the encoder and decoder networks used in this example,
see the Define Encoder and Decoder Networks on page 2-152 section of the example.

Predicting the most likely word for each step in the sequence can lead to suboptimal results. Any
incorrect predictions can cause even more incorrect predictions in later time steps. For example, for
the target text "An eagle flew by.", if the decoder predicts the first word of a translation as "A",
then the probability of predicting "eagle" for the next word becomes much more unlikely because of
the low probability of the phrase "a eagle" appearing in English text. The translation generation
process differs for training and prediction. This example uses different approaches to stabilize
training and the predictions:

To stabilize training, you can randomly use the target values as inputs to the decoder. In

particular, you can adjust the probability used to inject the target values as training progresses.
For example, you can train using the target values at a much higher rate at the start of training,
then decay the probability such that towards the end of training the model uses only the previous
predictions. This technique is known as scheduled sampling [2] on page 2-170. For more
information, see the Decoder Predictions Function on page 2-166 section of the example.

2-149

2 Modeling and Prediction

» To improve the predictions at translation time, for each time step, you can consider the top K
predictions for some positive integer K and explore different sequences of predictions to identify
the best combination. This technique is known as beam search. For more information, see the
Beam Search Function on page 2-162 section of the example.

This example shows how to load and preprocess text data to train a German to English language
translator, define the encoder and decoder networks, train the model using a custom training loop,
and generate translations using beam search.

Note: Language translation is a computationally intensive task. Training on the full data set used in
this example can take many hours to run. To make the example run quicker, you can reduce training
time at the cost of accuracy of predictions with previously unseen data by discarding a portion of the
training data. Removing observations can speed up training because it reduces the amount of data to
process in an epoch and reduces the vocabulary size of the training data.

To shorten the time it takes to run the example, discard 70% of the data. Note that discarding large
amounts of data negatively affects the accuracy of the learned model. For more accurate results,
reduce the amount of discarded data. To speed up the example, increase the amount of discarded
data.

discardProp = 0.70;

Load Training Data

Download and extract the English-German Tab-delimited Bilingual Sentence Pairs data set. The data
comes from https://www.manythings.org/anki/ and https://tatoeba.org, and is provided under the
Tatoeba Terms of Use and the CC-BY license.

downloadFolder = tempdir;

url = "https://www.manythings.org/anki/deu-eng.zip";
filename = fullfile(downloadFolder, "deu-eng.zip");
dataFolder = fullfile(downloadFolder, "deu-eng");

if ~exist(dataFolder, "dir")
fprintf("Downloading English-German Tab-delimited Bilingual Sentence Pairs data set (7.6 MB)
websave(filename,url);
unzip(filename,dataFolder);
fprintf("Done.\n")
end

Create a table that contains the sentence pairs specified as strings. Read the tab-delimited sentences
pairs using readtable. Specify the German text as the source and the English text as the target.

filename = fullfile(dataFolder, "deu.txt");

opts = delimitedTextImportOptions(...
Delimiter="\t", .
VariableNames=["Target" "Source" "License"],
SelectedVariableNames=["Source" "Target"],
VariableTypes=["string" "string" "string"],
Encoding="UTF-8");

View the first few sentence pairs in the data.

data = readtable(filename, opts);
head(data)

2-150

https://www.manythings.org/anki/
https://tatoeba.org
https://tatoeba.org/eng/terms_of_use
https://creativecommons.org/licenses/by/2.0/

Language Translation Using Deep Learning

ans=8x2 table

Source Target
"Geh." "Go."
"Hallo!" "Hi."
"Grif Gott!" "Hi."
"Lauf!" "Run!"
"Lauf!" "Run."
"Potzdonner!" "Wow!"
"Donnerwetter!" "Wow!"
"Feuer!" "Fire!"

Training on the full dataset can take a long time to run. To reduce training time at the cost of
accuracy, you can discard a portion of the training data. Removing observations can speed up training
because it reduces the amount of data to process in an epoch as well as reducing the vocabulary size
of the training data.

Discard a portion of the data according to the discardProp variable defined at the start of the
example. Note that discarding large amounts of data negatively affects the accuracy of the learned
model. For more accurate results, reduce the amount of discarded data by setting discardProp to a
lower value.

idx = size(data,l) - floor(discardProp*size(data,l)) + 1;
data(idx:end,:) = [];

View the number of remaining observations.

size(data,l)

ans = 68124

Split the data into training and test partitions containing 90% and 10% of the data, respectively.
trainingProp = 0.9;

idx = randperm(size(data,l),floor(trainingProp*size(data,l)));

dataTrain = data(idx,:);

dataTest = data;

dataTest(idx,:) = [];

View the first few rows of the training data.

head(dataTrain)
ans=8x2 table
Source Target

"Tom erschoss Mary." "Tom shot Mary."
"Ruf mich bitte an." "Call me, please."
"Kann das einer nachprifen?" "Can someone check this?"
"Das lasse ich mir nicht gefallen!" "I won't stand for it."
"Ich mag Englisch nicht." "I don't like English."
"Er ist auf dem Laufenden." "He is up to date.”
"Sie sieht glicklich aus." "She seems happy."
"Wo wurden sie geboren?" "Where were they born?"

2-151

2 Modeling and Prediction

View the number of training observations.

numObservationsTrain = size(dataTrain,1)

numObservationsTrain = 61311

Preprocess Data

Preprocess the text data using the preprocessText function, listed at the end of the example. The
preprocessText function preprocesses and tokenizes the input text for translation by splitting the
text into words and adding start and stop tokens.

documentsGerman

= preprocessText(dataTrain.Source);

Create a wordEncoding object that maps tokens to a numeric index and vice versa using a
vocabulary.

encGerman = wordEncoding(documentsGerman);

Convert the target data to sequences using the same steps.

documentsEnglish = preprocessText(dataTrain.Target);
encEnglish = wordEncoding(documentsEnglish);

View the vocabulary sizes of the source and target encodings.

numWordsGerman

numWordsGerman

numwWordsEnglish

numWordsEnglish

= encGerman.NumWords

= 12117

7226

encEnglish.NumWords

Define Encoder and Decoder Networks

This diagram shows the structure of a language translation model. The input text, specified as a
sequence of words, is passed through the encoder, which outputs an encoded version of the input
sequence and a hidden state used to initialize the decoder state. The decoder makes predictions one
word at a time using previous the prediction as input and also outputs updated state and context

values.
Wie heilen Sie ?
¢ ¢ ¢ Encoder
Encoder — <start> Output
y Y Yy y Y Yy
Initial | 3 - L - -
Context
) Decoder Decoder Decoder Decoder Decoder Decoder
Hidden —> —> > —> —>
State
What — is — your — name — ? — <stop=

2-152

Language Translation Using Deep Learning

Create the encoder and decoder networks using the languageTranslationlLayers function,
attached to this example as a supporting file. To access this function, open the example as a live
script.

For the encoder network, the languageTranslationLayers function defines a simple network
consisting of an embedding layer followed by an LSTM layer. An embedding operation converts
categorical tokens into numeric vectors, where the numeric vectors are learned by the network.

German
Sentence

v

Embedding

v

LSTM >

v

Encoded
German
Sentence

Hidden
State

For the decoder network, the languageTranslationLayers function defines a network that passes
the input data concatenated with the input context through an LSTM layer, and takes the updated
hidden state and the encoder output and passes it through an attention mechanism to determine the
context vector. The LSTM output and the context vector are then concatenated and passed through a
fully connected and a softmax layer for classification.

2-153

2 Modeling and Prediction

Previous
English Word
Prediction

Hidden
State

Encoded

German
Sentence
Embedding
Context ﬁ l
Concatenate
—»> LSTM T
\ A
Afttention

2-154

R

Concatenate

v

Fully Connect

v

Softmax

v

English
Word

Prediction

Updated
Context

Updated
Hidden State

Language Translation Using Deep Learning

Create the encoder and decoder networks using the languageTranslationlLayers function,
attached to this example as a supporting file. To access this function, open the example as a live
script. Specify an embedding dimension of 128, and 128 hidden units in the LSTM layers.

embeddingDimension = 128;
numHiddenUnits = 128;

[lgraphEncoder, lgraphDecoder] = languageTranslationLayers(embeddingDimension, numHiddenUnits, numWe

To train the network in a custom training loop, convert the encoder and decoder networks to
dlnetwork objects.

netEncoder
netDecoder

lnetwork(lgraphEncoder) ;
lnetwork(lgraphDecoder) ;

o O

The decoder has multiple outputs including the context output of the attention layer, which is also
passed to another layer. Specify the network outputs using the OutputNames property of the decoder
dlnetwork object.

netDecoder.OutputNames = ["softmax" "context" "lstm2/hidden" "lstm2/cell"];

Define Model Loss Function

Create the function modelLoss, listed in the Model Loss Function on page 2-165 section of the
example, which takes as input the encoder and decoder model parameters, a mini-batch of input data
and the padding masks corresponding to the input data, and the dropout probability and returns the
loss, the gradients of the loss with respect to the learnable parameters in the models, and the model
predictions.

Specify Training Options
Train with a mini-batch size of 64 for 15 epochs and a learning rate of 0.005.
miniBatchSize = 64;

numEpochs 15;
learnRate 0.005;

Initialize the options for Adam optimization.

gradientDecayFactor = 0.9;
squaredGradientDecayFactor = 0.999;

Train using gradually decaying values of € for scheduled sampling. Start with a value of € = 0.5 and
linearly decay to end with a value of € = 0. For more information about scheduled sampling, see the
Decoder Predictions Function on page 2-166 section of the example.

epsilonStart

= 0.5;
epsilonEnd = 0;

Train using SortaGrad [3] on page 2-170, which is a strategy to improve training of ragged sequences
by training for one epoch with the sequences sorted by sequence then shuffling once per epoch
thereafter.

Sort the training sequences by sequence length.

sequencelLengths = doclength(documentsGerman);
[~,1idx] = sort(sequencelLengths);

2-155

2 Modeling and Prediction

2-156

documentsGerman = documentsGerman(idx);
documentsEnglish = documentsEnglish(idx);

Train Model
Train the model using a custom training loop.

Create array datastores for the source and target data using the arrayDatastore function.
Combine the datastores using the combine function.

adsSource = arrayDatastore(documentsGerman);
adsTarget = arrayDatastore(documentsEnglish);
cds = combine(adsSource,adsTarget);

Create a mini-batch queue to automatically prepare mini-batches for training.
* Preprocess the training data using the preprocessMiniBatch function, which returns a mini-
batch of source sequences, target sequences, the corresponding mask, and the initial start token.
* Output dlarray objects with the format "CTB" (channel, time, batch).
* Discard any partial mini-batches.
mbg = minibatchqueue(cds,4,
MiniBatchSize=miniBatchSize,
MiniBatchFcn=@(X,Y) preprocessMiniBatch(X,Y,encGerman,encEnglish),

MiniBatchFormat=["CTB" "CTB" "CTB" "CTB"],
PartialMiniBatch="discard");

Initialize the training progress plot.

figure
C = colororder;
lineLossTrain = animatedline(Color=C(2,:));

xlabel("Iteration")
ylabel("Loss")
ylim([0 inf])

grid on

For the encoder and decoder networks, initialize the values for Adam optimization.

1;
[1;

[1;

trailingAvgEncoder = [
trailingAvgSqgEncoder =
trailingAvgDecder = [];
trailingAvgSqgDecoder =

Create an array of € values for scheduled sampling.

numIterationsPerEpoch = floor(numObservationsTrain/miniBatchSize);
numIterations = numIterationsPerEpoch * numEpochs;
epsilon = linspace(epsilonStart,epsilonEnd,numIterations);

Train the model. For each iteration:

* Read a mini-batch of data from the mini-batch queue.
* Compute the model loss and gradients.
* Update the encoder and decoder networks using the adamupdate function.

Language Translation Using Deep Learning

* Updat

e the training progress plot and display an example translation using the ind2str function,

attached to this example as a supporting file. To access this function, open this example as a live

script.

+ If the iteration yields the lowest training loss, then save the network.

At the end of each epoch, shuffle the mini-batch queue.

For large

iteratio
start =
lossMin
reset(mb

% Loop o
for epoc

% Lo
whil

data sets, training can take many hours to run.

n=0;
tic;

= inf;
q)

ver epochs.
h = 1l:numEpochs

op over mini-batches.
e hasdata(mbq)
iteration = iteration + 1;

% Read mini-batch of data.
[X,T,maskT,decoderInput] = next(mbq);

% Compute loss and gradients.
[loss,gradientsEncoder,gradientsDecoder,YPred] = dlfeval(@modellLoss,netEncoder,netDecode

% Update network learnable parameters using adamupdate.
[netEncoder, trailingAvgEncoder, trailingAvgSgEncoder] = adamupdate(netEncoder,gradientsl
iteration,learnRate,gradientDecayFactor, squaredGradientDecayFactor);

[netDecoder, trailingAvgDecder, trailingAvgSgDecoder] = adamupdate(netDecoder,gradientsD
iteration,learnRate,gradientDecayFactor, squaredGradientDecayFactor);

% Generate translation for plot.

if iteration == 1 || mod(iteration,10) ==
strGerman = ind2str(X(:,1,:),encGerman);
strénglish = ind2str(T(:,1,:),encEnglish,Mask=maskT);
strTranslated = ind2str(YPred(:,1,:),encEnglish);

end

% Display training progress.

D = duration(0,0,toc(start),Format="hh:mm:ss");
loss = double(gather(extractdata(loss)));
addpoints(linelLossTrain,iteration, loss)

title(
"Epoch: " + epoch + ", Elapsed: " + string(D) + newline + ...
"Source: " + strGerman + newline + ...
"Target: " + strEnglish + newline + ...
"Training Translation: " + strTranslated)
drawnow

% Save best network.

if loss < lossMin
lossMin = loss;
netBest.netEncoder = netEncoder;

2-157

2 Modeling and Prediction

2-158

end
end

netBest.netDecoder = netDecoder;
netBest.loss = loss;
netBest.iteration = iteration;
netBest.D = D;

% Shuffle.
shuffle(mbq);

end

Loss

Epoch: 15, Elapsed: 52:07:28
Source: tom geht am stock .
Target: tom walks with a cane.

Training Translation: tom walks doing a #, ") £, ©) {7}

5000 10000
Iteration

15000

The plot shows two translations of the source text. The target is the target translation provided by the
training data that the network attempts to reproduce. The training translation is the predicted
translation, which uses information from the target text via the scheduled sampling mechanism.

Add the word encodings to the netBest structure and save the structure in a MAT file.

netBest.encGerman = encGerman;
netBest.encEnglish = encEnglish;

D = datetime("now",Format="yyyy MM dd HH mm ss");
filename = "net best " + string(D) + ".mat";
save(filename, "netBest");

Extract the best network from netBest.

netEncoder
netDecoder

netBest.netEncoder;
netBest.netDecoder;

Language Translation Using Deep Learning

Test Model

To evaluate the quality of the translations, use the BiLingual Evaluation Understudy (BLEU) scoring
algorithm [4] on page 2-170.

Translate the test data using the translateText function listed at the end of the example.

strTranslatedTest = translateText(netEncoder,netDecoder,encGerman,encEnglish,dataTest.Source);

View a random selection of the test source text, target text, and predicted translations in a table.

numObservationsTest = size(dataTest,1);
idx = randperm(numObservationsTest,8);
tbl = table;

tbl.Source = dataTest.Source(idx);
tbl.Target = dataTest.Target(idx);
tbl.Translated = strTranslatedTest (idx)

tb1l=8x3 table

Source Target Translated
"Er sieht krank aus." "He seems ill." "he looks sick ."
"Ich werde das Buch holen." "I'll get the book." "i'll get the book .
"Ruhst du dich jemals aus?" "Do you ever rest?" "do you look out of ?
"Was willst du?" "What are you after?" "what do you want wan
"Du hast keinen Beweis." "You have no proof." "you have no proof .
"Macht es, wann immer ihr wollt." "Do it whenever you want." "do it you like it .
“Tom ist gerade nach Hause gekommen." "Tom has just come home." "tom just came home h
"Er luigt nie." "He never tells a lie." "he never lie lies .

To evaluate the quality of the translations using the BLEU similarity score, first preprocess the text
data using the same steps as for training. Specify empty start and stop tokens, as these are not used
in the translation.

candidates
references

preprocessText(strTranslatedTest,StartToken="",StopToken="");
preprocessText(dataTest.Target,StartToken="",StopToken="");

The bleuEvaluationScore function, by default, evaluates the similarity scores by comparing n-
grams of length one through four (multiword phrases with four or fewer words or single words). If
the candidate or reference documents have fewer than four tokens, then the resulting BLEU
evaluation score is zero. To ensure that bleuEvaluationScore returns nonzero scores for these
short candidate documents, set the n-gram weights to a vector with fewer elements than the number
of words in candidate.

Determine the length of the shortest candidate document.
minLength = min([doclength(candidates); doclength(references)])

2

minLength

If the shortest document has fewer than four tokens, then set the n-gram weights to a vector with a
length matching the shortest document with equal weights that sum to one. Otherwise, specify n-
gram weights of [0.25 0.25 0.25 0.25]. Note that if minLength is 1 (and consequently the n-
gram weights is also 1), then the bleuEvaluationScore function can return less meaningful results
as it only compares individual words (unigrams) and does not compare any n-grams (multiword
phrases).

2-159

2 Modeling and Prediction

if minLength < 4
ngramwWeights
else
ngramwWeights
end

ones(1l,minLength) / minLength;

[0.25 0.25 0.25 0.25];

Calculate the BLEU evaluation scores by iterating over the translations and using the
bleuEvaluationScore function.

for i = 1l:numObservationsTest
score(i) = bleuEvaluationScore(candidates(i),references(i),NgramwWeights=ngramWeights);
end

Visualize the BLEU evaluation scores in a histogram.

figure

histogram(score);

title("BLEU Evaluation Scores")
xlabel("Score")
ylabel("Frequency")

BLEU Evaluation Scores

1400 — T

1200

1000

800

600

Freguency

400

200

0 0.2 04 06 0.8 1
Scare

View a table of some of the best translations.

[~,idxSorted] = sort(score,"descend");
idx = idxSorted(1:8);

tbl = table;

tbl.Source = dataTest.Source(idx);

2-160

Language Translation Using Deep Learning

tbl.Target = dataTest.Target(idx);
tbl.Translated = strTranslatedTest(idx)

tb1=8x3 table

Source Target Translated
"Legen Sie sich hin!" "Lie low." "lie low ."
"Ich gahnte." "I yawned." "i yawned ."
"Kisse Tom!" "Kiss Tom." "kiss tom ."
"Kissen Sie Tom!" "Kiss Tom." "kiss tom ."
"Nimm Tom." "Take Tom." "take tom ."
"Komm bald." "Come soon." "come soon ."
"Ich habe es geschafft." "I made it." "i made it ."
"Ich sehe Tom." "I see Tom." "i see tom ."

View a table of some of the worst translations.

idx = idxSorted(end-7:end);

tbl = table;

tbl.Source = dataTest.Source(idx);
tbl.Target = dataTest.Target(idx);
tbl.Translated = strTranslatedTest(idx)

tb1=8x3 table
Source

Target

"Diese Schnecken kann man essen."

"Sie stehen noch zu Verfiigung."

"Diese Schraube passt zu dieser Mutter."
"Diese Puppe gehdrt mir."

"Das ist eine japanische Puppe."

"Das ist eine Kreuzung, an der alle Fahrzeuge anhalten missen.

"Diese Sendung ist eine Wiederholung."
"Die heutige Folge ist eine Wiederholung."

Generate Translations

Generate translations for new data using the translateText function.

strGermanNew = [
"Wie geht es Dir heute?"
"Wie heillen Sie?"
"Das Wetter ist heute gut."];

"These snails are edible.

"They'

"This
"This
"This
"This
"This

re still available.
bolt fits this nut.
doll belongs to me.
is a Japanese doll.
is a four-way stop.
program is a rerun.

"Today's show is a rerun.

Translate the text using the translateText, function listed at the end of the example.

strTranslatedNew = translateText(netEncoder,netDecoder,encGerman,encEnglish,strGermanNew)

strTranslatedNew = 3x1 string
"how do you feel today ?"
"what's your your name ? ? ? 7 ?"
"the is is today . . today . ."

2-161

2 Modeling and Prediction

Prediction Functions
Beam Search Function

Beam search is technique for exploring different combinations of time-step predictions to help find
the best prediction sequence. The premise of beam search is for each time-step prediction, identify
the top K predictions for some positive integer K (also known as the beam index or the beam width),
and maintain the top K predicted sequences so far at each time step.

This diagram shows the structure of an example beam search with beam index K = 3. For each
prediction, the top three sequences are maintained.

eagle
—» The X Tf;fat;égle
= pan >3 > rew)X

S5)

The eagle

W

| <start> H An . H ostrich }—)}X > Thé__bird — T];?;wb_i_r_d 3 :
X oo >3
flew
s CE =3

2-162

The beamSearch function takes as input the input data X, the encoder and decoder networks, and
the target word encoding, and returns the predicted translated words using the beam search
algorithm with a beam index of 3 and a maximum sequence length of 10. You can also specify optional
arguments using name-value arguments:

* BeamIndex — Beam index. The default is 3.
* MaxNumWords — Maximum sequence length. The default is 10.

function str = beamSearch(X,netEncoder,netDecoder,encEnglish,args)

% Parse input arguments.
arguments
X
netEncoder
netDecoder
encEnglish

args.BeamIndex = 3;
args.MaxNumWords =
end

10;

Language Translation Using Deep Learning

beamIndex = args.BeamIndex;
maxNumWords = args.MaxNumWords;
startToken = "<start>";
stopToken = "<stop>";

% Encoder predictions.
[Z, hiddenState, cellState] = predict(netEncoder,X);

% Initialize context.

miniBatchSize = size(X,2);

numHiddenUnits = size(Z,1);

context = zeros([numHiddenUnits miniBatchSize], "like",Z);
context = dlarray(context,"CB");

% Initialize candidates.

candidates = struct;

candidates.Words = startToken;
candidates.Score = 0;
candidates.StopFlag = false;
candidates.HiddenState = hiddenState;
candidates.CellState = cellState;

% Loop over words.

t 0;
while t < maxNumWords
t=1t+ 1;

candidatesNew = [];

% Loop over candidates.
for i = l:numel(candidates)

% Stop generating when stop token is predicted.
if candidates(i).StopFlag

continue
end

% Candidate details.

words = candidates(i).Words;

score = candidates(i).Score;

hiddenState = candidates(i).HiddenState;
cellState = candidates(i).CellState;

% Predict next token.
decoderInput = word2ind(encEnglish,words(end));
decoderInput dlarray(decoderInput, "CBT");

[YPred, context,hiddenState,cellState] = predict(netDecoder,decoderInput,hiddenState,cell
Outputs=["softmax" "context" "lstm2/hidden" "lstm2/cell"]);

% Find top predictions.
[scoresTop,idxTop] = maxk(extractdata(YPred),beamIndex);
idxTop = gather(idxTop);

% Loop over top predictions.

for j = 1l:beamIndex
candidate = struct;

2-163

2 Modeling and Prediction

2-164

% Determine candidate word and score.
candidateWord = ind2word(encEnglish,idxTop(j));
candidateScore = scoresTop(j);

% Set stop translating flag.
if candidateWord == stopToken
candidate.StopFlag = true;
else
candidate.StopFlag = false;
end

% Update candidate details.

candidate.Words = [words candidateWord];
candidate.Score = score + log(candidateScore);
candidate.HiddenState = hiddenState;
candidate.CellState = cellState;

% Add to new candidates.
candidatesNew = [candidatesNew candidate];
end
end

% Get top candidates.
[~,idx] = maxk([candidatesNew.Score],beamIndex);
candidates = candidatesNew(idx);

% Stop predicting when all candidates have stop token.
if all([candidates.StopFlagl)
break
end
end

% Get top candidate.
words = candidates(1l).Words;

% Convert to string scalar.
words (ismember(words, [startToken stopToken])) = [];
str = join(words);

end

Translate Text Function

The translateText function takes as input the encoder and decoder networks, an input string, and
source and target word encodings and returns the translated text.

function strTranslated = translateText(netEncoder,netDecoder,encGerman,encEnglish,strGerman,args

% Parse input arguments.
arguments
netEncoder
netDecoder
encGerman
encEnglish
strGerman

args.BeamIndex = 3;

Language Translation Using Deep Learning

end
beamIndex = args.BeamIndex;

% Preprocess text.
ocumentsGerman = preprocessText(strGerman);
preprocessPredictors(documentsGerman,encGerman) ;

d
X
X dlarray (X, "CTB");

% Loop over observations.

numObservations = numel(strGerman);
strTranslated = strings(numObservations,1);
for n = 1l:numObservations

% Translate text.
strTranslated(n) = beamSearch(X(:,n,:),netEncoder,netDecoder,encEnglish,BeamIndex=beamIndex)
end
end
Model Functions
Model Loss Function

The modellLoss function takes as input the encoder network, decoder network, mini-batches of
predictors X, targets T, padding mask corresponding to the targets maskT, and € value for scheduled
sampling. The function returns the loss, the gradients of the loss with respect to the learnable
parameters in the networks gradientsE and gradientsD, and the decoder predictions YPred
encoded as sequences of one-hot vectors.

Wie heilten Sie ?

¢ ¢ ¢ ¢ Encoder

Encoder — <start> Output
| | I

y l Y l y l y l Y l y

Initial | NI N s 3 Ly Ly

Context - ” 4 - ”
Decoder Decoder Decoder Decoder Decoder Decoder

Hidden L, S e 3 ——> ——

State

What — [— your — name — ? — <stop>

function [loss,gradientsE,gradientsD,YPred] = modellLoss(netEncoder,netDecoder,X,T,maskT,decoderIi

% Forward through encoder.
[Z, hiddenState, cellState] = forward(netEncoder, X);

% Decoder output.

Y = decoderPredictions(netDecoder,Z,T,hiddenState, cellState,decoderInput,epsilon);
% Sparse cross-entropy loss.
loss = sparseCrossEntropy(Y,T,maskT);

2-165

2 Modeling and Prediction

2-166

% Update gradients.
[gradientsE,gradientsD] = dlgradient(loss,netEncoder.Learnables,netDecoder.Learnables);

% For plotting, return loss normalized by sequence length.
sequencelLength = size(T,3);
loss = loss ./ sequencelength;

% For plotting example translations, return the decoder output.
YPred = onehotdecode(Y,1:size(Y,1),1,"single");

end
Decoder Predictions Function

The decoderPredictions function takes as input, the decoder network, the encoder output Z, the
targets T, the decoder input hidden and cell state values, and the € value for scheduled sampling.

To stabilize training, you can randomly use the target values as inputs to the decoder. In particular,
you can adjust the probability used to inject the target values as training progresses. For example,
you can train using the target values at a much higher rate at the start of training, then decay the
probability such that towards the end of training the model uses only the previous predictions. This
technique is known as scheduled sampling [2] on page 2-170. This diagram shows the sampling
mechanism incorporated into one time step of a decoder prediction.

Language Translation Using Deep Learning

Previous Encoded
Target English German
Word Sentence
Previous
English Word —>» -
Prediction 1
Random
Sample
I

Decoder

v

English
Word
Prediction

The decoder makes predictions one time step at a time. At each time step, the input is randomly
selected according to the € value for scheduled sampling. In particular, the function uses the target
value as input with probability € and uses the previous prediction otherwise.

function Y = decoderPredictions(netDecoder,Z,T,hiddenState,cellState,decoderInput,epsilon)

% Initialize context.

numHiddenUnits = size(Z,1);

miniBatchSize = size(Z,2);

context zeros([numHiddenUnits miniBatchSize], "like",Z);
context dlarray(context,"CB");

2-167

2 Modeling and Prediction

2-168

% Initialize output.

idx = (netDecoder.Learnables.Layer == "fc" & netDecoder.Learnables.Parameter=="Bias");
numClasses = numel(netDecoder.Learnables.Value{idx});

sequencelLength = size(T,3);

Y = zeros([numClasses miniBatchSize sequencelLengthl], "like",Z);

Y = dlarray(Y,"CBT");

% Forward start token through decoder.
[Y(:,:,1),context,hiddenState,cellState] = forward(netDecoder,decoderInput,hiddenState,cellState

% Loop over remaining time steps.
for t = 2:sequencelLength

% Scheduled sampling. Randomly select previous target or previous
% prediction.
if rand < epsilon
% Use target value.
decoderInput = T(:,:,t-1);
else
% Use previous prediction.
[~,Yhat] = max(Y(:,:,t-1),[1,1);
decoderInput = Yhat;
end

% Forward through decoder.
[Y(:,:,t),context,hiddenState,cellState] = forward(netDecoder,decoderInput,hiddenState,cellS
end

end
Sparse Cross-Entropy Loss

The sparseCrossEntropy function calculates the cross-entropy loss between the predictions Y and
targets T with the target mask maskT, where Y is an array of probabilities and T is encoded as a
sequence of integer values.

function loss = sparseCrossEntropy(Y,T,maskT)

% Initialize loss.
[~,miniBatchSize, sequencelLength] = size(Y);
loss = zeros([miniBatchSize sequenceLength],"like",Y);

% To prevent calculating log of 0, bound away from zero.
precision = underlyingType(Y);
Y(Y < eps(precision)) = eps(precision);

% Loop over time steps.
for n = 1:miniBatchSize
for t = 1l:sequencelLength
idx = T(1,n,t);
loss(n,t) = -log(Y(idx,n,t));
end
end

% Apply masking.
maskT = squeeze(maskT);
loss = loss .* maskT;

Language Translation Using Deep Learning

% Calculate sum and normalize.
loss = sum(loss,"all");
loss = loss / miniBatchSize;

end
Preprocessing Functions
Text Preprocessing Function

The preprocessText function preprocesses the input text for translation by converting the text to
lowercase, adding start and stop tokens, and tokenizing.

function documents = preprocessText(str,args)

arguments
str
args.StartToken = "<start>";
args.StopToken = "<stop>";
end

startToken = args.StartToken;
stopToken = args.StopToken;

str = lower(str);
str = startToken + str + stopToken;
documents = tokenizedDocument(str,CustomTokens=[startToken stopToken]);

end
Mini-Batch Preprocessing Function

The preprocessMiniBatch function preprocesses tokenized documents for training. The function
encodes mini-batches of documents as sequences of numeric indices and pads the sequences to have
the same length.

function [XSource,XTarget,mask,decoderInput] = preprocessMiniBatch(dataSource,dataTarget, encGerm:

documentsGerman = cat(1l,dataSource{:});
XSource = preprocessPredictors(documentsGerman,encGerman);

documentsEngligh = cat(1l,dataTarget{:});
sequencesTarget = doc2sequence(encEnglish,documentsEngligh,PaddingDirection="none");

[XTarget,mask] = padsequences(sequencesTarget,2,PaddingValue=1);
decoderInput = XTarget(:,1,:);

XTarget(:,1,:) = [1];

mask(:,1,:) = [1];

end

Predictors Preprocessing Function

The preprocessPredictors function preprocesses source documents for training or prediction.
The function encodes an array of tokenized documents as sequences of numeric indices.

function XSource = preprocessPredictors(documentsGerman,encGerman)

2-169

2 Modeling and Prediction

2-170

sequencesSource = doc2sequence(encGerman,documentsGerman,PaddingDirection="none");
XSource = padsequences(sequencesSource,2);

end

Bibliography

Chorowski, Jan, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
“Attention-Based Models for Speech Recognition.” Preprint, siubmitted June 24, 2015. https://
arxiv.org/abs/1506.07503.

2 Bengio, Samy, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. “Scheduled Sampling for
Sequence Prediction with Recurrent Neural Networks.” Preprint, submitted September 23, 2015.
https://arxiv.org/abs/1506.03099.

3 Amodei, Dario, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg,
Carl Case, Jared Casper et al. "Deep Speech 2: End-to-End Speech Recognition in English and
Mandarin." In Proceedings of Machine Learning Research 48 (2016): 173-182.

4 Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. "BLEU: A Method for Automatic
Evaluation of Machine Translation." In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics (2002): 311-318.

See Also

tokenizedDocument | wordEncoding | dlarray | adamupdate | dlfeval | dlgradient |

doc2sequence

More About

“Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)
“Prepare Text Data for Analysis” on page 1-11

“Analyze Text Data Using Topic Models” on page 2-13

“Classify Text Data Using Deep Learning” on page 2-90

“Classify Text Data Using Convolutional Neural Network” on page 2-98

“Train a Sentiment Classifier” on page 2-71

“Visualize Word Embeddings Using Text Scatter Plots” on page 3-8

Classify Out-of-Memory Text Data Using Deep Learning

Classify Out-of-Memory Text Data Using Deep Learning

This example shows how to classify out-of-memory text data with a deep learning network using a
transformed datastore.

A transformed datastore transforms or processes data read from an underlying datastore. You can
use a transformed datastore as a source of training, validation, test, and prediction data sets for deep
learning applications. Use transformed datastores to read out-of-memory data or to perform specific
preprocessing operations when reading batches of data.

When training the network, the software creates mini-batches of sequences of the same length by
padding, truncating, or splitting the input data. The trainingOptions function provides options to
pad and truncate input sequences, however, these options are not well suited for sequences of word
vectors. Furthermore, this function does not support padding data in a custom datastore. Instead, you
must pad and truncate the sequences manually. If you left-pad and truncate the sequences of word
vectors, then the training might improve.

The “Classify Text Data Using Deep Learning” on page 2-90 example manually truncates and pads all
the documents to the same length. This process adds lots of padding to very short documents and
discards lots of data from very long documents.

Alternatively, to prevent adding too much padding or discarding too much data, create a transformed
datastore that inputs mini-batches into the network. The datastore created in this example converts
mini-batches of documents to sequences or word indices and left-pads each mini-batch to the length
of the longest document in the mini-batch.

Load Pretrained Word Embedding

The datastore requires a word embedding to convert documents to sequences of vectors. Load a
pretrained word embedding using fastTextWordEmbedding. This function requires Text Analytics
Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If this
support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;
Load Data

Create a tabular text datastore from the data in factoryReports. csv. Specify to read the data
from the "Description” and "Category" columns only.

filenameTrain = "factoryReports.csv";

textName = "Description";

labelName = "Category";

ttdsTrain = tabularTextDatastore(filenameTrain, 'SelectedVariableNames', [textName labelName]);

View a preview of the datastore.
preview(ttdsTrain)

ans=8x2 table

Description Category
{'Items are occasionally getting stuck in the scanner spools.' } {'Mechanical Faili
{'Loud rattling and banging sounds are coming from assembler pistons.'} {'Mechanical Faili

2-171

2 Modeling and Prediction

{'Electronic Faili
{'Electronic Faili
{'Electronic Faili
{'Leak"

{'Electronic Faili
{'Mechanical Faili

{'There are cuts to the power when starting the plant.'
{'Fried capacitors in the assembler.'

{'Mixer tripped the fuses.'

{'Burst pipe in the constructing agent is spraying coolant.'
{'A fuse is blown in the mixer.'

{'Things continue to tumble off of the belt.'

B e e e e i o

Transform Datastore

Create a custom transform function that converts data read from the datastore to a table containing
the predictors and the responses. The transformText function takes the data read from a
tabularTextDatastore object and returns a table of predictors and responses. The predictors are
C-by-S arrays of word vectors given by the word embedding emb, where C is the embedding
dimension and S is the sequence length. The responses are categorical labels over the classes.

To get the class names, read the labels from the training data using the readLabels function, listed
and the end of the example, and find the unique class names.

labels = readLabels(ttdsTrain, labelName);
classNames = unique(labels);
numObservations = numel(labels);

Because tabular text datastores can read multiple rows of data in a single read, you can process a full
mini-batch of data in the transform function. To ensure that the transform function processes a full
mini-batch of data, set the read size of the tabular text datastore to the mini-batch size that will be
used for training.

miniBatchSize = 64;
ttdsTrain.ReadSize = miniBatchSize;

To convert the output of the tabular text data to sequences for training, transform the datastore using
the transform function.

tdsTrain = transform(ttdsTrain, @(data) transformText(data,emb,classNames))

tdsTrain =
TransformedDatastore with properties:

UnderlyingDatastore: [1x1 matlab.io.datastore.TabularTextDatastore]
SupportedOutputFormats: ["txt" "csv" "xlsx" "x1ls" "parquet" "parq"
Transforms: {@(data)transformText(data,emb,classNames)}
IncludeInfo: 0

png

Preview of the transformed datastore. The predictors are C-by-S arrays, where S is the sequence
length and C is the number of features (the embedding dimension). The responses are the categorical
labels.

preview(tdsTrain)

ans=8x2 table
predictors responses

{300x11 single} Mechanical Failure
{300x11 single} Mechanical Failure
{300x11 single} Electronic Failure

2-172

Classify Out-of-Memory Text Data Using Deep Learning

{300x11 single} Electronic Failure
{300x11 single} Electronic Failure
{300x11 single} Leak

{300x11 single} Electronic Failure
{300x11 single} Mechanical Failure

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include a sequence
input layer and set the input size to the embedding dimension. Next, include an LSTM layer with 180
hidden units. To use the LSTM layer for a sequence-to-label classification problem, set the output
mode to 'last'. Finally, add a fully connected layer with output size equal to the number of classes,
a softmax layer, and a classification layer.

numFeatures = emb.Dimension;

numHiddenUnits = 180;

numClasses = numel(classNames);

layers = [...
sequencelnputLayer(numFeatures)
lstmLayer(numHiddenUnits, 'OutputMode', 'last")
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

Specify the training options. Specify the solver to be 'adam’' and the gradient threshold to be 2. The
datastore does not support shuffling, so set 'Shuffle', to 'never"'. Validate the network once per
epoch. To monitor the training progress, set the 'Plots' option to 'training-progress'. To
suppress verbose output, set 'Verbose' to false.

By default, trainNetwork uses a GPU if one is available. To specify the execution environment
manually, use the 'ExecutionEnvironment' name-value pair argument of trainingOptions.
Training on a CPU can take significantly longer than training on a GPU. Training using a GPU
requires Parallel Computing Toolbox™ and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

numIterationsPerEpoch = floor(numObservations / miniBatchSize);

options = trainingOptions('adam',
'MaxEpochs', 15,
'MiniBatchSize',miniBatchSize,
'GradientThreshold', 2,
'Shuffle', 'never',
'Plots', 'training-progress',
'Verbose', false);

Train the LSTM network using the trainNetwork function.

net = trainNetwork(tdsTrain, layers,options);

2-173

2 Modeling and Prediction

Accuracy (%)

Training Progress {14-Jan-2020 15:49:56)

Results
‘alidation accuracy NiA
Training finished

Training Time:
Starttime:

Elapsed time: 4sec

Training Cycle

Epoch; 150115
Iteration, 105
Validation

Frequency: NiA
Other Information
Hardware resource:
Learning rate schedule:
Learning rate; 0.001

Constant

Learn more

10 20 30 40 50 60 70 80 90 100
Iteration

Accuracy

Training (smoothed)
Training
— -8 - Vaidation

Loss

Training (smoothed)

Training

10 20 30 40 50 80 70 80 90 100
Iteration

— -@— - Validation

[==]=]

Reached final iteration

14-Jan-2020 15:48:56

Single CPU

2-174

Predict Using New Data

Classify the event type of three new reports. Create a string array containing the new reports.
reportsNew = [.
"Coolant is pooling underneath sorter."

"Sorter blows fuses at start up."
"There are some very loud rattling sounds coming from the assembler."];

Preprocess the text data using the preprocessing steps as the training documents.
documentsNew = preprocessText(reportsNew);

Convert the text data to sequences of embedding vectors using doc2sequence.
XNew = doc2sequence(emb,documentsNew) ;

Classify the new sequences using the trained LSTM network.

labelsNew = classify(net,XNew)
labelsNew = 3x1 categorical
Leak

Electronic Failure
Mechanical Failure

Classify Out-of-Memory Text Data Using Deep Learning

Transform Text Function

The transformText function takes the data read from a tabularTextDatastore object and
returns a table of predictors and responses. The predictors are C-by-S arrays of word vectors given
by the word embedding emb, where C is the embedding dimension and S is the sequence length. The
responses are categorical labels over the classes in classNames.

function dataTransformed = transformText(data,emb,classNames)
% Preprocess documents.
textData = data{:,1};

documents = preprocessText(textData);

% Convert to sequences.
predictors = doc2sequence(emb,documents);

% Read labels.
labels = data{:,2};
responses = categorical(labels,classNames);

% Convert data to table.
dataTransformed = table(predictors, responses);

end
Preprocessing Function
The function preprocessText performs these steps:

1 Tokenize the text using tokenizedDocument.
2 Convert the text to lowercase using lower.
3 Erase the punctuation using erasePunctuation.

function documents = preprocessText(textData)

documents = tokenizedDocument(textData);
documents = lower(documents);

documents = erasePunctuation(documents);
end

Read Labels Function

The readLabels function creates a copy of the tabularTextDatastore object ttds and reads the
labels from the labelName column.

function labels = readlLabels(ttds, labelName)

ttdsNew = copy(ttds);
ttdsNew.SelectedVariableNames = labelName;
tbl = readall(ttdsNew);

labels = tbl. (labelName);

2-175

2 Modeling and Prediction

2-176

end

See Also

fastTextWordEmbedding | wordEmbeddinglLayer | doc2sequence | tokenizedDocument |
lstmLayer | trainNetwork | trainingOptions | sequencelnputlLayer | transform

Related Examples

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Using Topic Models” on page 2-13

. “Analyze Text Data Using Multiword Phrases” on page 2-7

. “Train a Sentiment Classifier” on page 2-71

. “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
. “Deep Learning in MATLAB” (Deep Learning Toolbox)

Pride and Prejudice and MATLAB

Pride and Prejudice and MATLAB

This example shows how to train a deep learning LSTM network to generate text using character
embeddings.

To train a deep learning network for text generation, train a sequence-to-sequence LSTM network to
predict the next character in a sequence of characters. To train the network to predict the next
character, specify the responses to be the input sequences shifted by one time step.

To use character embeddings, convert each training observation to a sequence of integers, where the
integers index into a vocabulary of characters. Include a word embedding layer in the network which
learns an embedding of the characters and maps the integers to vectors.

Load Training Data

Read the HTML code from The Project Gutenberg EBook of Pride and Prejudice, by Jane Austen and
parse it using webread and htmlTree.

url = "https://www.gutenberg.org/files/1342/1342-h/1342-h.htm";
code webread(url);
tree htmlTree(code);

Extract the paragraphs by finding the p elements. Specify to ignore paragraph elements with class
"toc" using the CSS selector ' :not(.toc)"'.

paragraphs = findElement(tree, 'p:not(.toc)"');
Extract the text data from the paragraphs using extractHTMLText. and remove the empty strings.

textData = extractHTMLText (paragraphs);
textData(textData == "") = [];

Remove strings shorter than 20 characters.

idx = strlength(textData) < 20;
textData(idx) = [];

Visualize the text data in a word cloud.
figure

wordcloud(textData);
title("Pride and Prejudice")

2-177

https://www.gutenberg.org/files/1342/1342-h/1342-h.htm

2 Modeling and Prediction

2-178

Pride and Prejudice

attention

. talking expected

enough i e
give Collins young

always [
shall WD make gDDd married ,,

s oowe, NEVET S3Y vl i Wickham
plaasire mlght E“U’E.‘I"IDarCy nOW,_,.. come Catherine

i Ay up made
TSS?"”QS sister tlme “ Wellagain

e”erfamny MlSS Jane m‘f“'m
o |Iﬁle herSEIf ennet rledaughter

"kgftlady E I |?n§ b et hhope gil.itfr"

replied away

speak ratumn nDthlng Bln Ie dear house
looked Ibng OOr? y thDUgh seemed

great take thouaht WlSh L'_',"dla received
. P happy

mother
father

Convert Text Data to Sequences

Convert the text data to sequences of character indices for the predictors and categorical sequences
for the responses.

The categorical function treats newline and whitespace entries as undefined. To create categorical
elements for these characters, replace them with the special characters "" (pilcrow, "\x00B6") and
"." (middle dot, "\x00B7") respectively. To prevent ambiguity, you must choose special characters
that do not appear in the text. These characters do not appear in the training data so can be used for
this purpose.

newlineCharacter = compose("\x00B6");
whitespaceCharacter = compose("\x00B7");
textData = replace(textData, [newline " "], [newlineCharacter whitespaceCharacter]);

Loop over the text data and create a sequence of character indices representing the characters of
each observation and a categorical sequence of characters for the responses. To denote the end of
each observation, include the special character "ex" (end of text, "\x2403").

end0fTextCharacter = compose("\x2403");
numDocuments = numel(textData);
for i = l:numDocuments
characters = textData{i};
= double(characters);

% Create vector of categorical responses with end of text character.
charactersShifted = [cellstr(characters(2:end)')' endOfTextCharacter];

Pride and Prejudice and MATLAB

Y = categorical(charactersShifted);

XTrain{i}
YTrain{i}

X;
Y;

end

During training, by default, the software splits the training data into mini-batches and pads the
sequences so that they have the same length. Too much padding can have a negative impact on the
network performance.

To prevent the training process from adding too much padding, you can sort the training data by
sequence length, and choose a mini-batch size so that sequences in a mini-batch have a similar
length.

Get the sequence lengths for each observation.

numObservations = numel(XTrain);
for i=1l:numObservations
sequence = XTrain{i};
sequencelengths(i) = size(sequence,?2);
end

Sort the data by sequence length.

[~,1dx] = sort(sequencelLengths);
XTrain XTrain(idx);
YTrain YTrain(idx);

Create and Train LSTM Network

Define the LSTM architecture. Specify a sequence-to-sequence LSTM classification network with 400
hidden units. Set the input size to be the feature dimension of the training data. For sequences of
character indices, the feature dimension is 1. Specify a word embedding layer with dimension 200
and specify the number of words (which correspond to characters) to be the highest character value
in the input data. Set the output size of the fully connected layer to be the number of categories in
the responses. To help prevent overfitting, include a dropout layer after the LSTM layer.

The word embedding layer learns an embedding of characters and maps each character to a 200-
dimension vector.

inputSize = size(XTrain{l},1);
numClasses = numel(categories([YTrain{:}]));
numCharacters = max([textData{:}]);

layers = [
sequencelnputlLayer(inputSize)
wordEmbeddinglLayer (200, numCharacters)
lstmLayer (400, 'OutputMode', 'sequence')
dropoutLayer(0.2);
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

Specify the training options. Specify to train with a mini-batch size of 32 and initial learn rate 0.01. To
prevent the gradients from exploding, set the gradient threshold to 1. To ensure the data remains
sorted, set 'Shuffle' to 'never'. To monitor the training progress, set the 'Plots' option to
'training-progress'. To suppress verbose output, set 'Verbose' to false.

2-179

2 Modeling and Prediction

options = trainingOptions('adam’,
'MiniBatchSize',32,...
'InitialLearnRate',0.01,
'GradientThreshold', 1,
'Shuffle', 'never',
'Plots', 'training-progress’',
'Verbose', false);

Train the network.

net = trainNetwork(XTrain,YTrain, layers,options);

s

Accuracy (%)

[==]r=]

Training Progress (20-Jul-2018 16:34:59)

Results
Walidation accuracy: A
Training finished: Reached final iteration

Training Time
Starttime: 20-Jul-2018 16:34:58
Elapsed time: 6 min 4 sec

Training Cycle

Epoch 30 of 30
teration 1890 of 1890
lterations per epoch 63
Maximum iterations 1880

validation
Frequency: A
Patience: NiA

Other Information

Hardware resource Single GPU
Leaming rate schedule: Constant
Leaming rate 0.01

Learn more

200 400 600 800 1000 1200 1400 1600 1800
lteration

Accuracy

Training (smoothed)
Training

— — ® — — Validation

Loss

Training (smoothed)
1 | WD\ | 1 ?D | 1 1 20 ®

200 400 600 800 1000 1200 1400 1600 1800 Training
Iteration = — @ — = Validation

2-180

Generate New Text

Generate the first character of the text by sampling a character from a probability distribution
according to the first characters of the text in the training data. Generate the remaining characters
by using the trained LSTM network to predict the next sequence using the current sequence of
generated text. Keep generating characters one-by-one until the network predicts the "end of text"
character.

Sample the first character according to the distribution of the first characters in the training data.

initialCharacters = extractBefore(textData,2);
firstCharacter = datasample(initialCharacters,1);
generatedText = firstCharacter;

Convert the first character to a numeric index.

X = double(char(firstCharacter));

Pride and Prejudice and MATLAB

For the remaining predictions, sample the next character according to the prediction scores of the
network. The prediction scores represent the probability distribution of the next character. Sample
the characters from the vocabulary of characters given by the class names of the output layer of the
network. Get the vocabulary from the classification layer of the network.

vocabulary = string(net.Layers(end).ClassNames);

Make predictions character by character using predictAndUpdateState. For each prediction,
input the index of the previous character. Stop predicting when the network predicts the end of text
character or when the generated text is 500 characters long. For large collections of data, long
sequences, or large networks, predictions on the GPU are usually faster to compute than predictions
on the CPU. Otherwise, predictions on the CPU are usually faster to compute. For single time step
predictions, use the CPU. To use the CPU for prediction, set the 'ExecutionEnvironment' option
of predictAndUpdateStateto 'cpu’.

maxLength = 500;
while strlength(generatedText) < maxLength
% Predict the next character scores.
[net,characterScores] = predictAndUpdateState(net, X, 'ExecutionEnvironment', 'cpu');

% Sample the next character.
newCharacter = datasample(vocabulary,l, 'Weights',characterScores);

% Stop predicting at the end of text.

if newCharacter == endOfTextCharacter
break

end

% Add the character to the generated text.
generatedText = generatedText + newCharacter;

% Get the numeric index of the character.

X double(char(newCharacter));
end

Reconstruct the generated text by replacing the special characters with their corresponding
whitespace and new line characters.

generatedText = replace(generatedText, [newlineCharacter whitespaceCharacter], [newline " "])

generatedText =
"“I wish Mr. Darcy, upon latter of my sort sincerely fixed in the regard to relanth. We were to

To generate multiple pieces of text, reset the network state between generations using resetState.

net = resetState(net);

See Also
wordEmbeddinglLayer | doc2sequence | tokenizedDocument | IstmLayer | trainNetwork |

trainingOptions | sequenceInputLayer |wordcloud | extractHTMLText | findElement |
htmlTree

Related Examples

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)

2-181

2 Modeling and Prediction

. “Word-By-Word Text Generation Using Deep Learning” on page 2-183

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Using Topic Models” on page 2-13

. “Analyze Text Data Using Multiword Phrases” on page 2-7

. “Train a Sentiment Classifier” on page 2-71

. “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
. “Deep Learning in MATLAB” (Deep Learning Toolbox)

2-182

Word-By-Word Text Generation Using Deep Learning

Word-By-Word Text Generation Using Deep Learning

This example shows how to train a deep learning LSTM network to generate text word-by-word.

To train a deep learning network for word-by-word text generation, train a sequence-to-sequence
LSTM network to predict the next word in a sequence of words. To train the network to predict the
next word, specify the responses to be the input sequences shifted by one time step.

This example reads text from a website. It reads and parses the HTML code to extract the relevant
text, then uses a custom mini-batch datastore documentGenerationDatastore to input the
documents to the network as mini-batches of sequence data. The datastore converts documents to
sequences of numeric word indices. The deep learning network is an LSTM network that contains a
word embedding layer.

A mini-batch datastore is an implementation of a datastore with support for reading data in batches.
You can use a mini-batch datastore as a source of training, validation, test, and prediction data sets
for deep learning applications. Use mini-batch datastores to read out-of-memory data or to perform
specific preprocessing operations when reading batches of data.

You can adapt the custom mini-batch datastore specified by documentGenerationDatastore.mto
your data by customizing the functions. This file is eattached to this example as a supporting file. To
access this file, open the example as a live script. For an example showing how to create your own
custom mini-batch datastore, see “Develop Custom Mini-Batch Datastore” (Deep Learning Toolbox).

Load Training Data

Load the training data. Read the HTML code from Alice's Adventures in Wonderland by Lewis Carroll
from Project Gutenberg.

url = "https://www.gutenberg.org/files/11/11-h/11-h.htm";
code = webread(url);

Parse HTML Code

The HTML code contains the relevant text inside <p> (paragraph) elements. Extract the relevant text
by parsing the HTML code using htmlTree and then finding all the elements with element name

Ilpll.
tree = htmlTree(code);
selector = "p";

subtrees = findElement(tree,selector);

Extract the text data from the HTML subtrees using extractHTMLText and view the first 10
paragraphs.

textData = extractHTMLText(subtrees);
textData(1:10)

ans = 10x1 string
"Alice was beginning to get very tired of sitting by her sister on the bank, and of having n
"So she was considering in her own mind (as well as she could, for the hot day made her feel
"There was nothing so very remarkable in that; nor did Alice think it so very much out of th
"In another moment down went Alice after it, never once considering how in the world she was
"The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down,
"Either the well was very deep, or she fell very slowly, for she had plenty of time as she w

2-183

https://www.gutenberg.org/files/11/11-h/11-h.htm

2 Modeling and Prediction

"“Well!” thought Alice to herself, “after such a fall as this, I shall think nothing of tumb
"Down, down, down. Would the fall never come to an end? “I wonder how many miles I’'ve fallen
"Presently she began again. “I wonder if I shall fall right through the earth! How funny it"
"Down, down, down. There was nothing else to do, so Alice soon began talking again. “Dinah’l

Remove the empty paragraphs and view the first 10 remaining paragraphs.

textData(textData == "") = [];
textData(1:10)

ans = 10x1 string

"Alice was beginning to get very tired of sitting by her sister on the bank, and of having nq
"So she was considering in her own mind (as well as she could, for the hot day made her feel
"There was nothing so very remarkable in that; nor did Alice think it so very much out of the
"In another moment down went Alice after it, never once considering how in the world she was
"The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down,
"Either the well was very deep, or she fell very slowly, for she had plenty of time as she w
"“Well!” thought Alice to herself, “after such a fall as this, I shall think nothing of tumb
"Down, down, down. Would the fall never come to an end? “I wonder how many miles I've fallen
"Presently she began again. “I wonder if I shall fall right through the earth! How funny it’’
"Down, down, down. There was nothing else to do, so Alice soon began talking again. “Dinah’l

Visualize the text data in a word cloud.

figure
wordcloud(textData);
title("Alice's Adventures in Wonderland")

2-184

Word-By-Word Text Generation Using Deep Learning

Alice's Adventures in Wonderland

made

nathing et
mamant heard last
athe Wh|te tE”f"—St mee Make R’asbblt
came
Hatter ~9€t e “head
’ Mock kX large Caten

o Cat know herself Turtle op, round sear
s timedown 4 |ike Queen'=
e Kng. o od £\ little thing

it
ht twn::

faund that's COIME We nt began wandar
quite agaln o gOturned 9=
asked NEVET I welljust
J[hll"'lk. thOUg ht GI’}’DhGI"I Duchess
- By
once got Why voice doar ye 11 king
Hare Mouse

beginning

Prepare Data for Training

Create a datastore that contains the data for training using documentGenerationDatastore. For
the predictors, this datastore converts the documents into sequences of word indices using a word
encoding. The first word index for each document corresponds to a "start of text" token. The "start of
text" token is given by the string "startOfText". For the responses, the datastore returns
categorical sequences of the words shifted by one.

Tokenize the text data using tokenizedDocument.

documents = tokenizedDocument(textData);

Create a document generation datastore using the tokenized documents.
ds = documentGenerationDatastore(documents);

To reduce the amount of padding added to the sequences, sort the documents in the datastore by
sequence length.

ds = sort(ds);
Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include a sequence
input layer and set the input size to 1. Next, include a word embedding layer of dimension 100 and
the same number of words as the word encoding. Next, include an LSTM layer and specify the hidden
size to be 100. Finally, add a fully connected layer with the same size as the number of classes, a

2-185

2 Modeling and Prediction

2-186

softmax layer, and a classification layer. The number of classes is the number of words in the
vocabulary plus an extra class for the "end of text" class.

inputSize = 1;

embeddingDimension = 100;

numWords = numel(ds.Encoding.Vocabulary);
numClasses = numWords + 1;

layers = [
sequencelnputlLayer(inputSize)
wordEmbeddinglLayer(embeddingDimension, numWords)
lstmLayer(100)
dropoutLayer(0.2)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationlLayer];

Specify the training options. Specify the solver to be 'adam'. Train for 300 epochs with learn rate
0.01. Set the mini-batch size to 32. To keep the data sorted by sequence length, set the 'Shuffle'
option to 'never'. To monitor the training progress, set the 'Plots' option to 'training-
progress'. To suppress verbose output, set 'Verbose' to false.

options = trainingOptions('adam’,
'MaxEpochs',300, ...
'InitiallLearnRate',0.01,
'MiniBatchSize', 32,
'Shuffle', 'never',
'Plots', 'training-progress',
'Verbose', false);

Train the network using trainNetwork.

net = trainNetwork(ds,layers,options);

Word-By-Word Text Generation Using Deep Learning

Accuracy (%)

Training Progress (06-Jul-2021 14:35:25) Results
Validation accuracy: MN/A

Training finished: Max epachs completed

Training Time

Start time: 06-Jul-2021 14:35:25
Elapsed time: 31 min 15 sec
Training Cycle
Epoch: 300 of 300
Iteration: 7200
Validation
Frequency: N/A
Other Information
Hardware resource: Single GPU
))))))) Learning rate schedule: ~ Constant
g 1000 2000 3000 4000 5000 6000 7000 Learning rate: 0.01
lteration
Learn more
Accuracy
Training (smoothed)
Training
— ~@— - Validation
Loss
1000 2000 BGIUD 40‘00 5000 50‘00 7000 Training (smoothed)
lteration Training
— —@— - Validation h

Generate New Text

Generate the first word of the text by sampling a word from a probability distribution according to
the first words of the text in the training data. Generate the remaining words by using the trained
LSTM network to predict the next time step using the current sequence of generated text. Keep
generating words one-by-one until the network predicts the "end of text" word.

To make the first prediction using the network, input the index that represents the "start of text"
token. Find the index by using the word2ind function with the word encoding used by the document
datastore.

enc = ds.Encoding;
wordIndex = word2ind(enc,"startOfText")

wordIndex = 1

For the remaining predictions, sample the next word according to the prediction scores of the
network. The prediction scores represent the probability distribution of the next word. Sample the
words from the vocabulary given by the class names of the output layer of the network.

vocabulary = string(net.Layers(end).Classes);

Make predictions word by word using predictAndUpdateState. For each prediction, input the
index of the previous word. Stop predicting when the network predicts the end of text word or when
the generated text is 500 characters long. For large collections of data, long sequences, or large
networks, predictions on the GPU are usually faster to compute than predictions on the CPU.
Otherwise, predictions on the CPU are usually faster to compute. For single time step predictions, use
the CPU. To use the CPU for prediction, set the 'ExecutionEnvironment' option of
predictAndUpdateStateto 'cpu’.

2-187

2 Modeling and Prediction

generatedText = "";
maxLength = 500;
while strlength(generatedText) < maxLength
% Predict the next word scores.
[net,wordScores] = predictAndUpdateState(net,wordIndex, 'ExecutionEnvironment', 'cpu');

% Sample the next word.
newWord = datasample(vocabulary,1l, 'Weights',wordScores);

% Stop predicting at the end of text.
if newWord == "EndOfText"

break
end

% Add the word to the generated text.
generatedText = generatedText + " " + newWord;

% Find the word index for the next input.

wordIndex = word2ind(enc,newWord);
end

The generation process introduces whitespace characters between each prediction, which means that
some punctuation characters appear with unnecessary spaces before and after. Reconstruct the
generated text by removing the spaces before and after the appropriate punctuation characters.

Remove the spaces that appear before the specified punctuation characters.

pUnCtUatloncharaCterS = [II.II II’II mrn II)II II:II II?II II!II];
generatedText = replace(generatedText," " + punctuationCharacters,punctuationCharacters);

Remove the spaces that appear after the specified punctuation characters.

punctuationCharacters = ["(" "‘"];

generatedText = replace(generatedText,punctuationCharacters + " ",punctuationCharacters)
generatedText =

" “ Just about as much right, ” said the Duchess, “ and that'’s all the least, " said the Hatter.

To generate multiple pieces of text, reset the network state between generations using resetState.

net = resetState(net);

See Also
wordEmbeddinglLayer | doc2sequence | tokenizedDocument | LstmLayer | trainNetwork |

trainingOptions | sequencelnputlLayer |wordcloud | extractHTMLText | findElement |
htmlTree

Related Examples

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)
. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Using Topic Models” on page 2-13

. “Analyze Text Data Using Multiword Phrases” on page 2-7

. “Train a Sentiment Classifier” on page 2-71

2-188

Word-By-Word Text Generation Using Deep Learning

“Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)

2-189

2 Modeling and Prediction

Generate Text Using Autoencoders

2-190

This example shows how to generate text data using autoencoders.

An autoencoder is a type of deep learning network that is trained to replicate its input. An
autoencoder consists of two smaller networks: and encoder and a decoder. The encoder maps the
input data to a feature vector in some latent space. The decoder reconstructs data using vectors in
this latent space.

The training process is unsupervised. In other words, the model does not require labeled data. To
generate text, you can use the decoder to reconstruct text from arbitrary input.

This example trains an autoencoder to generate text. The encoder uses a word embedding and an
LSTM operation to map the input text into latent vectors. The decoder uses an LSTM operation and
the same embedding to reconstruct the text from the latent vectors.

Load Data
The file sonnets. txt contains all of Shakespeare's sonnets in a single text file.

Read the Shakespeare's Sonnets data from the file "sonnets. txt".

filename
textData

"sonnets.txt";
fileread(filename);

The sonnets are indented by two whitespace characters. Remove the indentations using replace and
split the text into separate lines using the split function. Remove the header from the first nine
elements and the short sonnet titles.

textData = replace(textData," ","");
textData = split(textData,newline);
textData(1:9) = [];
textData(strlength(textbData)<5) = [];

Prepare Data

Create a function that tokenizes and preprocesses the text data. The function preprocessText,
listed at the end of the example, performs these steps:

1 Prepends and appends each input string with the specified start and stop tokens, respectively.
2 Tokenize the text using tokenizedDocument.

Preprocess the text data and specify the start and stop tokens "<start>" and "<stop>",
respectively.

startToken = "<start>";
stopToken = "<stop>";
documents = preprocessText(textData,startToken,stopToken);

Create a word encoding object from the tokenized documents.

enc = wordEncoding(documents);

Generate Text Using Autoencoders

When training a deep learning model, the input data must be a numeric array containing sequences
of a fixed length. Because the documents have different lengths, you must pad the shorter sequences
with a padding value.

Recreate the word encoding to also include a padding token and determine the index of that token.
paddingToken = "<pad>";
newVocabulary = [enc.Vocabulary paddingToken];

enc = wordEncoding(newVocabulary);
paddingIdx = word2ind(enc,paddingToken)

paddingIdx = 3595
Initialize Model Parameters

Initialize the parameters for the following model.

Encoder Decoder
o e
r 1 r B
o o— Y2 R Yr
Fully Fully L Fully
Connect Connect Connect
' L ' Fully Latent _ - ' - o '
LSTM —» LSTM | —» L5TM | Connect Vector —» LSTM > LSTM > > LSTM
Embedding Embedding Embedding Embedding Embedding “e Embedding
T To T Start
Token

Here, T is the sequence length, xq, -+, x is the input sequence of word indices, and yy, -, yr is the
reconstructed sequence.

The encoder maps sequences of word indices to a latent vector by converting the input to sequences
of word vectors using an embedding, inputting the word vector sequences into an LSTM operation,
and applying a fully connected operation to the last time step of the LSTM output. The decoder
reconstructs the input using an LSTM initialized the encoder output. For each time step, the decoder
predicts the next time step and uses the output for the next time-step predictions. Both the encoder
and the decoder use the same embedding.

Specify the dimensions of the parameters.

embeddingDimension = 100;
numHiddenUnits = 150;
latentDimension = 75;
vocabularySize = enc.NumWords;

Create a struct for the parameters.

parameters = struct;

2-191

2 Modeling and Prediction

2-192

Initialize the weights of the embedding using the Gaussian using the initializeGaussian function
which is attached to this example as a supporting file. Specify a mean of 0 and a standard deviation of
0.01. To learn more, see “Gaussian Initialization” (Deep Learning Toolbox).

sz [embeddingDimension vocabularySizel;

mu = 0;

sigma = 0.01;

parameters.emb.Weights = initializeGaussian(sz,mu,sigma);

Initialize the learnable parameters for the encoder LSTM operation:

+ Initialize the input weights with the Glorot initializer using the initializeGlorot function
which is attached to this example as a supporting file. To learn more, see “Glorot Initialization”
(Deep Learning Toolbox).

+ Initialize the recurrent weights with the orthogonal initializer using the initializeOrthogonal
function which is attached to this example as a supporting file. To learn more, see “Orthogonal
Initialization” (Deep Learning Toolbox).

* Initialize the bias with the unit forget gate initializer using the initializeUnitForgetGate
function which is attached to this example as a supporting file. To learn more, see “Unit Forget
Gate Initialization” (Deep Learning Toolbox).

sz = [4*numHiddenUnits embeddingDimension];
numOut = 4*numHiddenUnits;
numIn = embeddingDimension;

parameters.lstmEncoder.InputWeights = initializeGlorot(sz,numOut,numIn);
parameters.lstmEncoder.RecurrentWeights = initializeOrthogonal([4*numHiddenUnits numHiddenUnits]
parameters.lstmEncoder.Bias = initializeUnitForgetGate(numHiddenUnits);

Initialize the learnable parameters for the encoder fully connected operation:

+ Initialize the weights with the Glorot initializer.
+ Initialize the bias with zeros using the initializeZeros function which is attached to this
example as a supporting file. To learn more, see “Zeros Initialization” (Deep Learning Toolbox).

sz = [latentDimension numHiddenUnits];
numOut = latentDimension;
numIn = numHiddenUnits;

parameters.fcEncoder.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fcEncoder.Bias = initializeZeros([latentDimension 1]);

Initialize the learnable parameters for the decoder LSTM operation:

* [Initialize the input weights with the Glorot initializer.

* Initialize the recurrent weights with the orthogonal initializer.
* [Initialize the bias with the unit forget gate initializer.

sz = [4*latentDimension embeddingDimension];

numOut = 4*latentDimension;
numIn = embeddingDimension;

parameters.lstmDecoder.InputWeights = initializeGlorot(sz,numOut,numIn);
parameters.lstmDecoder.RecurrentWeights = initializeOrthogonal([4*latentDimension latentDimensiol
parameters.lstmDecoder.Bias = initializeZeros([4*latentDimension 1]);

Generate Text Using Autoencoders

Initialize the learnable parameters for the decoder fully connected operation:

* [Initialize the weights with the Glorot initializer.
* [Initialize the bias with zeros.

sz = [vocabularySize latentDimension];
numOut = vocabularySize;
numIn = latentDimension;

parameters.fcDecoder.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fcDecoder.Bias = initializeZeros([vocabularySize 1]);

To learn more about weight initialization, see “Initialize Learnable Parameters for Model Function”
(Deep Learning Toolbox).

Define Model Encoder Function

Create the function modelEncoder, listed in the Encoder Model Function on page 2-197 section of
the example, that computes the output of the encoder model. The modelEncoder function, takes as
input sequences of word indices, the model parameters, and the sequence lengths, and returns the
corresponding latent feature vector. To learn more about defining a model encoder function, see
“Define Text Encoder Model Function” (Deep Learning Toolbox).

Define Model Decoder Function

Create the function modelDecoder, listed in the Decoder Model Function on page 2-198 section of
the example, that computes the output of the decoder model. The modelDecoder function, takes as
input sequences of word indices, the model parameters, and the sequence lengths, and returns the
corresponding latent feature vector. To learn more about defining a model decoder function, see
“Define Text Decoder Model Function” (Deep Learning Toolbox).

Define Model Loss Function

The modelLoss function, listed in the Model Loss Function on page 2-199 section of the example,
takes as input the model learnable parameters, the input data and a vector of sequence lengths for
masking, and returns the loss, and the gradients of the loss with respect to the learnable parameters.
To learn more about defining a model loss function, see “Define Model Loss Function for Custom
Training Loop” (Deep Learning Toolbox).

Specify Training Options
Specify the options for training.
Train for 100 epochs with a mini-batch size of 128.

miniBatchSize = 128;
numEpochs = 100;

Train with a learning rate of 0.01.

learnRate = 0.01;

Train Network

Train the network using a custom training loop.

Initialize the parameters for the Adam optimizer.

2-193

2 Modeling and Prediction

trailingAvg

=[]
trailingAvgSq =

[1;
Initialize the training progress plot. Create an animated line that plots the loss against the

corresponding iteration.

figure

C = colororder;

linelLossTrain = animatedline(Color=C(2,:));
xlabel("Iteration")

ylabel("Loss")

ylim([0 inf])

grid on

Train the model. For the first epoch, shuffle the data and loop over mini-batches of data.
For each mini-batch:

* Convert the text data to sequences of word indices.

* Convert the data to dlarray.

* For GPU training, convert the data to gpuArray objects.

* Compute loss and gradients.

* Update the learnable parameters using the adamupdate function.
» Update the training progress plot.

Train on a GPU if one is available. Using a GPU requires Parallel Computing Toolbox™ and a
supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox).

Training can take some time to run.

numObservations = numel(documents);
numIterationsPerEpoch = floor(numObservations / miniBatchSize);

iteration = 0;
start = tic;

for epoch = 1l:numEpochs

% Shuffle.
idx = randperm(numObservations);
documents = documents(idx);

for i = l:numIterationsPerEpoch
iteration = iteration + 1;

% Read mini-batch.
idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
documentsBatch = documents(idx);

% Convert to sequences.

X = doc2sequence(enc,documentsBatch,
PaddingDirection="right",
PaddingValue=paddingIdx);

2-194

Generate Text Using Autoencoders

X = cat(1,X{:});
% Convert to dlarray.
X = dlarray(X, "BTC");

% If training on a GPU, then convert data to gpuArray.
if canUseGPU

X = gpuArray(X);
end

% Calculate sequence lengths.
sequencelLengths = doclength(documentsBatch);

% Evaluate model loss and gradients.
[loss,gradients] = dlfeval(@modelLoss, parameters, X, sequencelLengths);

% Update learnable parameters.
[parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients,
trailingAvg,trailingAvgSq,iteration, learnRate);

% Display the training progress.

D = duration(0,0,toc(start),Format="hh:mm:ss");

loss = double(loss);
addpoints(linelLossTrain,iteration, loss)
title("Epoch: " + epoch + ", Elapsed: " + string(D))

drawnow

end
end

2-195

2 Modeling and Prediction

2-196

Epoch: 100, Elapsed: 00:32:53

Loss

D i i i i i i i i]
0 200 400 GO0 800 1000 1200 1400 1600 1800

Iteration

Generate Text

Generate text using closed loop generation by initializing the decoder with different random states.
Closed loop generation is when the model generates data one time-step at a time and uses the
previous prediction as input for the next prediction.

Specify to generate 3 sequences of length 16.

3 .

numGenerations ;
16;

sequencelength

Create an array of random values to initialize the decoder state.
Z = dlarray(randn(latentDimension,numGenerations), "CB");
If predicting on a GPU, then convert data to gpuArray.
if canUseGPU
Z = gpuArray(Z);
end

Make predictions using the modelPredictions function, listed at the end of the example. The
modelPredictions function returns the output scores of the decoder given the model parameters,
decoder initial state, maximum sequence length, word encoding, start token, and mini-batch size.

Y = modelDecoderPredictions(parameters,Z,sequenceLength,enc,startToken,miniBatchSize);

Find the word indices with the highest scores.

Generate Text Using Autoencoders

[~,1idx] = max(Y,[],1);
idx = squeeze(idx);

Convert the numeric indices to words and join them using the join function.

strGenerated = join(enc.Vocabulary(idx));

Extract the text before the first stop token using the extractBefore function. To prevent the
function from returning missing when there are no stop tokens, append a stop token to the end of
each sequence.

strGenerated = extractBefore(strGenerated+stopToken,stopToken);

Remove padding tokens.

strGenerated = erase(strGenerated, paddingToken);

The generation process introduces whitespace characters between each prediction, which means that
some punctuation characters appear with unnecessary spaces before and after. Reconstruct the
generated text by removing the spaces before and after the appropriate punctuation characters.

Remove the spaces that appear before the specified punctuation characters.

AP L A A

punctuationCharacters = [". , :
strGenerated = replace(strGenerated," " + punctuationCharacters,punctuationCharacters);

Remove the spaces that appear after the specified punctuation characters.

punctuationCharacters = ["(" "‘"];
strGenerated = replace(strGenerated,punctuationCharacters +

,punctuationCharacters);
Remove leading and trailing white space using the strip function and view the generated text.
strGenerated = strip(strGenerated)
strGenerated = 3x1 string
"me whose fool black grounded less waning travels less pine pine sing cool thrive kindness tl

"perjur'd outward a looks black, here might."
"birds him antique side his hours age,"

Encoder Model Function

The modelEncoder function, takes as input the model parameters, sequences of word indices, and
the sequence lengths, and returns the corresponding latent feature vector.

Because the input data contains padded sequences of different lengths, the padding can have adverse
effects on loss calculations. For the LSTM operation, instead of returning the output of the last time
step of the sequence (which likely corresponds to the LSTM state after processing lots of padding
values), determine the actual last time step given by the sequencelLengths input.

function Z = modelEncoder(parameters, X, sequenceLengths)
% Embedding.

weights = parameters.emb.Weights;

Z = embed(X,weights);

% LSTM.

2-197

2 Modeling and Prediction

2-198

inputWeights = parameters.lstmEncoder.InputWeights;
recurrentWeights = parameters.lstmEncoder.RecurrentWeights;
bias = parameters.lstmEncoder.Bias;

numHiddenUnits = size(recurrentWeights,2);
hiddenState = zeros(numHiddenUnits,1,"like",6X);
cellState = zeros(numHiddenUnits,1,"like",6X);

Z1 = lstm(Z,hiddenState, cellState, inputWeights, recurrentWeights,bias);

% Output mode 'last' with masking.
miniBatchSize = size(Z1,2);
Z = zeros(numHiddenUnits,miniBatchSize, "like",Z1);

for n 1:miniBatchSize
t sequencelLengths(n);
Z(:,n) = Z1(:,n,t);

end

% Fully connect.

weights = parameters.fcEncoder.Weights;

bias = parameters.fcEncoder.Bias;

Z = fullyconnect(Z,weights,bias,DataFormat="CB");

end
Decoder Model Function

The modelDecoder function, takes as input the model parameters, sequences of word indices, and
the network state, and returns the decoded sequences.

Because the 1stm function is stateful (when given a time series as input, the function propagates and
updates the state between each time step) and that the embed and fullyconnect functions are
time-distributed by default (when given a time series as input, the functions operate on each time
step independently), the modelDecoder function supports both sequence and single time-step
inputs.

function [Y,state] = modelDecoder(parameters,X,state)

% Embedding.
weights = parameters.emb.Weights;
X = embed(X,weights);

% LSTM.

inputWeights = parameters.lstmDecoder.InputWeights;
recurrentWeights = parameters.lstmDecoder.RecurrentWeights;
bias = parameters.lstmDecoder.Bias;

hiddenState = state.HiddenState;
cellState = state.CellState;

[Y,hiddenState,cellState] = lstm(X,hiddenState,cellState,
inputWeights, recurrentWeights,bias);

state.HiddenState = hiddenState;
state.CellState = cellState;

% Fully connect.

Generate Text Using Autoencoders

weights = parameters.fcDecoder.Weights;
bias = parameters.fcDecoder.Bias;
Y = fullyconnect(Y,weights,bias);

% Softmax.
Y = softmax(Y);

end
Model Loss Function

The modelLoss function takes as input the model learnable parameters, the input data X, and a
vector of sequence lengths for masking, and returns the loss and the gradients of the loss with
respect to the learnable parameters.

To calculate the masked loss, the model loss function uses the maskedCrossEntropy function, listed
at the end of the example. To train the decoder to predict the next time-step of the sequence, specify
the targets to be the input sequences shifted by one time-step.

To learn more about defining a model loss function, see “Define Model Loss Function for Custom
Training Loop” (Deep Learning Toolbox).

function [loss,gradients] = modelLoss(parameters,X, sequencelLengths)

% Model encoder.
Z = modelEncoder(parameters, X, sequencelLengths);

% Initialize LSTM state.

state = struct;

state.HiddenState = Z;

state.CellState = zeros(size(Z),"like",Z);

% Teacher forcing.

Y = modelDecoder(parameters,X,state);

% Loss.

Y =Y(:,:,1:end-1);

T =X(:,:,2:end);

loss = mean(maskedCrossEntropy(Y,T,sequencelLengths));

% Gradients.
gradients = dlgradient(loss,parameters);

% Normalize loss for plotting.
sequencelLength = size(X,3);
loss = loss / sequencelength;
end

Model Predictions Function

The modelPredictions function returns the output scores of the decoder given the model
parameters, decoder initial state, maximum sequence length, word encoding, start token, and mini-
batch size.

function Y = modelDecoderPredictions(parameters,Z,maxLength,enc,startToken,miniBatchSize)

numObservations = size(Z,2);

2-199

2 Modeling and Prediction

numIterations ceil(numObservations / miniBatchSize);

startTokenIdx = word2ind(enc,startToken);
vocabularySize = enc.NumWords;

Y = zeros(vocabularySize,numObservations,maxLength,"like",Z);

% Loop over mini-batches.

for i = l:numlIterations
idxMiniBatch = (i-1)*miniBatchSize+1:min(i*miniBatchSize,numObservations);
miniBatchSize = numel(idxMiniBatch);

% Initialize state.

state = struct;

state.HiddenState = Z(:,idxMiniBatch);

state.CellState = zeros(size(Z(:,idxMiniBatch)),"like",Z);

% Initialize decoder input.
decoderInput = dlarray(repmat(startTokenIdx,[1l miniBatchSize]),"CBT");

% Loop over time steps.

for t = 1l:maxLength
% Predict next time step.
[Y(:,idxMiniBatch,t), state] = modelDecoder(parameters,decoderInput,state);

% Closed loop generation.
[~,idx] = max(Y(:,idxMiniBatch,t));
decoderInput = dlarray(idx,"CB");
end
end
end
Masked Cross Entropy Loss Function

The maskedCrossEntropy function calculates the loss between the specified input sequences and
target sequences ignoring any time steps containing padding using the specified vector of sequence
lengths.

function maskedLoss = maskedCrossEntropy(Y,T,sequenceLengths)
numClasses = size(Y,1);

miniBatchSize = size(Y,2);

sequencelLength = size(Y,3);

maskedLoss = zeros(sequencelLength,miniBatchSize, "like",Y);

for t = 1l:sequencelLength
Tl = single(oneHot(T(:,:,t),numClasses));

mask = (t<=sequencelLengths)’;

maskedLoss(t,:) = mask .* crossentropy(Y(:,:,t),T1);
end

maskedLoss = sum(maskedLoss,1);

end

2-200

Generate Text Using Autoencoders

Text Preprocessing Function
The function preprocessText performs these steps:

1 Prepends and appends each input string with the specified start and stop tokens, respectively.
2 Tokenize the text using tokenizedDocument.

function documents = preprocessText(textData,startToken,stopToken)

% Add start and stop tokens.
textData = startToken + textData + stopToken;

% Tokenize the text.
documents = tokenizedDocument(textData, 'CustomTokens', [startToken stopToken]);

end

One-Hot Encoding Function

The oneHot function converts an array of numeric indices to one-hot encoded vectors.
function oh = oneHot(idx, outputSize)

miniBatchSize = numel(idx);
oh = zeros(outputSize,miniBatchSize);

1:miniBatchSize

C - idx(n);
(c,n) = 1;

end

See Also
wordEncoding | word2ind | doc2sequence | tokenizedDocument

More About
. “Sequence-to-Sequence Translation Using Attention” on page 2-135
. “Generate Text Using Deep Learning” (Deep Learning Toolbox)

. “Define Text Encoder Model Function” on page 2-202
. “Define Text Decoder Model Function” on page 2-209
. “Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)

2-201

2 Modeling and Prediction

Define Text Encoder Model Function

2-202

This example shows how to define a text encoder model function.

In the context of deep learning, an encoder is the part of a deep learning network that maps the input
to some latent space. You can use these vectors for various tasks. For example,

» Classification by applying a softmax operation to the encoded data and using cross entropy loss.
* Sequence-to-sequence translation by using the encoded vector as a context vector.

Load Data
The file sonnets. txt contains all of Shakespeare's sonnets in a single text file.

Read the Shakespeare's Sonnets data from the file "sonnets.txt".

filename
textData

"sonnets.txt";
fileread(filename);

The sonnets are indented by two whitespace characters. Remove the indentations using replace and
split the text into separate lines using the split function. Remove the header from the first nine
elements and the short sonnet titles.

textData = replace(textData," ","");
textData = split(textData,newline);
textData(1:9) = [];
textData(strlength(textData)<5) = [1;

Prepare Data

Create a function that tokenizes and preprocesses the text data. The function preprocessText,
listed at the end of the example, performs these steps:

1 Prepends and appends each input string with the specified start and stop tokens, respectively.
2 Tokenize the text using tokenizedDocument.

Preprocess the text data and specify the start and stop tokens "<start>" and "<stop>",
respectively.

startToken = "<start>";
stopToken = "<stop>";
documents = preprocessText(textData,startToken,stopToken);

Create a word encoding object from the tokenized documents.

enc = wordEncoding(documents);

When training a deep learning model, the input data must be a numeric array containing sequences
of a fixed length. Because the documents have different lengths, you must pad the shorter sequences
with a padding value.

Recreate the word encoding to also include a padding token and determine the index of that token.

paddingToken = "<pad>";
newVocabulary = [enc.Vocabulary paddingToken];

Define Text Encoder Model Function

enc = wordEncoding(newVocabulary);
paddingIdx = word2ind(enc,paddingToken)

paddingIdx = 3595
Initialize Model Parameters
The goal of the encoder is to map sequences of word indices to vectors in some latent space.

Initialize the parameters for the following model.

Word
Indices

Fully Feature

—>»| Embedding —>» LSTM [—>
Connect Vector

This model uses three operations:

* The embedding maps word indices in the range 1 though vocabularySize to vectors of
dimension embeddingDimension, where vocabularySize is the number of words in the
encoding vocabulary and embeddingDimension is the number of components learned by the
embedding.

* The LSTM operation takes as input sequences of word vectors and outputs 1-by-numHiddenUnits
vectors, where numHiddenUnits is the number of hidden units in the LSTM operation.

* The fully connected operation multiplies the input by a weight matrix adding bias and outputs
vectors of size latentDimension, where latentDimension is the dimension of the latent
space.

Specify the dimensions of the parameters.

embeddingDimension = 100;
numHiddenUnits = 150;
latentDimension = 50;
vocabularySize = enc.NumWords;

Create a struct for the parameters.

parameters = struct;

Initialize the weights of the embedding using the Gaussian using the initializeGaussian function
which is attached to this example as a supporting file. Specify a mean of 0 and a standard deviation of
0.01. To learn more, see “Gaussian Initialization” (Deep Learning Toolbox).

mu = 0;
sigma = 0.01;
parameters.emb.Weights = initializeGaussian([embeddingDimension vocabularySize],mu,sigma);

Initialize the learnable parameters for the encoder LSTM operation:

* Initialize the input weights with the Glorot initializer using the initializeGlorot function
which is attached to this example as a supporting file. To learn more, see “Glorot Initialization”
(Deep Learning Toolbox).

+ Initialize the recurrent weights with the orthogonal initializer using the initializeOrthogonal
function which is attached to this example as a supporting file. To learn more, see “Orthogonal
Initialization” (Deep Learning Toolbox).

2-203

2 Modeling and Prediction

2-204

+ Initialize the bias with the unit forget gate initializer using the initializeUnitForgetGate
function which is attached to this example as a supporting file. To learn more, see “Unit Forget
Gate Initialization” (Deep Learning Toolbox).

The sizes of the learnable parameters depend on the size of the input. Because the inputs to the
LSTM operation are sequences of word vectors from the embedding operation, the number of input
channels is embeddingDimension.

* The input weight matrix has size 4*numHiddenUnits-by-inputSize, where inputSize is the
dimension of the input data.

* The recurrent weight matrix has size 4*numHiddenUnits-by-numHiddenUnits.

* The bias vector has size 4*numHiddenUnits-by-1.

sz = [4*numHiddenUnits embeddingDimension];

numOut = 4*numHiddenUnits;
numIn = embeddingDimension;

parameters.lstmEncoder.InputWeights = initializeGlorot(sz,numOut,numIn);
parameters.lstmEncoder.RecurrentWeights = initializeOrthogonal([4*numHiddenUnits numHiddenUnits]
parameters.lstmEncoder.Bias = initializeUnitForgetGate(numHiddenUnits);

Initialize the learnable parameters for the encoder fully connected operation:

+ Initialize the weights with the Glorot initializer.

* Initialize the bias with zeros using the initializeZeros function which is attached to this
example as a supporting file. To learn more, see “Zeros Initialization” (Deep Learning Toolbox).

The sizes of the learnable parameters depend on the size of the input. Because the inputs to the fully
connected operation are the outputs of the LSTM operation, the number of input channels is
numHiddenUnits. To make the fully connected operation output vectors with size
latentDimension, specify an output size of latentDimension.

* The weights matrix has size outputSize-by-inputSize, where outputSize and inputSize
correspond to the output and input dimensions, respectively.
* The bias vector has size outputSize-by-1.

sz = [latentDimension numHiddenUnits];
numOut = latentDimension;
numIn = numHiddenUnits;

parameters.fcEncoder.Weights = initializeGlorot(sz,numOut,numIn);
parameters.fcEncoder.Bias = initializeZeros([latentDimension 1]);

Define Model Encoder Function

Create the function modelEncoder, listed in the Encoder Model Function on page 2-207 section of
the example, that computes the output of the encoder model. The modelEncoder function, takes as
input sequences of word indices, the model parameters, and the sequence lengths, and returns the
corresponding latent feature vector.

Prepare Mini-Batch of Data

To train the model using a custom training loop, you must iterate over mini-batches of data and
convert it into the format required for the encoder model and the model gradients functions. This

Define Text Encoder Model Function

section of the example illustrates the steps needed for preparing a mini-batch of data inside the
custom training loop.

Prepare an example mini-batch of data. Select a mini-batch of 32 documents from documents. This
represents the mini-batch of data used in an iteration of a custom training loop.

miniBatchSize = 32;

idx = 1:miniBatchSize;
documentsBatch = documents(idx);

Convert the documents to sequences using the doc2sequence function and specify to right-pad the
sequences with the word index corresponding to the padding token.

X = doc2sequence(enc,documentsBatch,

PaddingDirection="right",
PaddingValue=paddingIdx);

The output of the doc2sequence function is a cell array, where each element is a row vector of word
indices. Because the encoder model function requires numeric input, concatenate the rows of the
data using the cat function and specify to concatenate along the first dimension. The output has size
miniBatchSize-by-sequencelLength, where sequencelLength is the length of the longest
sequence in the mini-batch.

X = cat(1,X{:});
size(X)

ans = 1x2

32 14

Convert the data to a dlarray with format "BTC" (batch, time, channel). The software automatically
rearranges the output to have format "CTB" so the output has size 1-by-miniBatchSize-by-
sequencelLength.

X = dlarray(X, 'BTC");
size(X)

ans = 1x3

1 32 14

For masking, calculate the unpadded sequence lengths of the input data using the doclength
function with the mini-batch of documents as input.

sequencelLengths = doclength(documentsBatch);
This code snippet shows an example of preparing a mini-batch in a custom training loop.
iteration = 0;

% Loop over epochs.
for epoch = 1l:numEpochs

% Loop over mini-batches.
for i = l:numIterationsPerEpoch

2-205

2 Modeling and Prediction

2-206

iteration = iteration + 1;

% Read mini-batch.
idx = (i-1)*miniBatchSize+1:i*miniBatchSize;
documentsBatch = documents(idx);

Convert to sequences.

= doc2sequence(enc,documentsBatch,
PaddingDirection="right",
PaddingValue=paddingIdx);

= cat(1l,X{:});

X o°

>

Convert to dlarray.
= dlarray(X, "BTC");

X o°

o°

Calculate sequence lengths.
sequencelLengths = doclength(documentsBatch);

Evaluate model gradients.

o° o°

Update learnable parameters.

o° o°

end
end

Use Model Function in Model Loss Function

When training a deep learning model with a custom training loop, you must calculate the loss and the
gradients of the loss with respect to the learnable parameters. This calculation depends on the output
of a forward pass of the model function.

To perform a forward pass of the encoder, use the modelEncoder function directly with the
parameters, data, and sequence lengths as input. The output is a latentDimension-by-
miniBatchSize matrix.

Z = modelEncoder(parameters, X, sequencelLengths);
size(Z)

ans = 1x2
50 32

This code snippet shows an example of using a model encoder function inside the model gradients
function.

function [loss,gradients] = modelLoss(parameters,X,sequencelLengths)
Z = modelEncoder(parameters, X, sequenceLengths);

Calculate loss.

o® o°

Calculate gradients.

o® o°

end

Define Text Encoder Model Function

This code snippet shows an example of evaluating the model gradients in a custom training loop.
iteration = 0;

% Loop over epochs.
for epoch = 1l:numEpochs

% Loop over mini-batches.
for i = l:numIterationsPerEpoch
iteration = iteration + 1;

Prepare mini-batch.

o° o°

% Evaluate model gradients.
[loss,gradients] = dlfeval(@modelLoss, parameters, X, sequencelLengths);

% Update learnable parameters.
[parameters,trailingAvg,trailingAvgSq] = adamupdate(parameters,gradients,
trailingAvg, trailingAvgSq,iteration);
end
end

Encoder Model Function

The modelEncoder function, takes as input the model parameters, sequences of word indices, and
the sequence lengths, and returns the corresponding latent feature vector.

Because the input data contains padded sequences of different lengths, the padding can have adverse
effects on loss calculations. For the LSTM operation, instead of returning the output of the last time
step of the sequence (which likely corresponds to the LSTM state after processing lots of padding
values), determine the actual last time step given by the sequencelLengths input.

function Z = modelEncoder(parameters, X, sequenceLengths)

% Embedding.
weights = parameters.emb.Weights;
Z = embed(X,weights);

% LSTM.

inputWeights = parameters.lstmEncoder.InputWeights;
recurrentWeights = parameters.lstmEncoder.RecurrentWeights;
bias = parameters.lstmEncoder.Bias;

numHiddenUnits = size(recurrentWeights,2);
hiddenState = zeros(numHiddenUnits,1,"like",6X);
cellState = zeros(numHiddenUnits,1,"like",6X);

Z1 = lstm(Z,hiddenState,cellState, inputWeights, recurrentWeights,bias);

% Output mode "last" with masking.
iniBatchSize = size(Z1,2);
zeros(numHiddenUnits,miniBatchSize, "like",Z1);

m
Z
Z = dlarray(Z,"CB");

for n 1:miniBatchSize
t sequencelLengths(n);
Z(:,n) = Z1(:,n,t);

2-207

2 Modeling and Prediction

end

% Fully connect.

weights = parameters.fcEncoder.Weights;

bias = parameters.fcEncoder.Bias;

Z = fullyconnect(Z,weights,bias);

end

Preprocessing Function

The function preprocessText performs these steps:

1 Prepends and appends each input string with the specified start and stop tokens, respectively.
2 Tokenize the text using tokenizedDocument.

function documents = preprocessText(textData,startToken,stopToken)

% Add start and stop tokens.
textData = startToken + textData + stopToken;

% Tokenize the text.
documents = tokenizedDocument (textData, 'CustomTokens', [startToken stopToken]);

end

See Also
wordEncoding | word2ind | doc2sequence | tokenizedDocument

More About

. “Classify Text Data Using Deep Learning” on page 2-90

. “Classify Text Data Using Convolutional Neural Network” on page 2-98

. “Sequence-to-Sequence Translation Using Attention” on page 2-135

. “Generate Text Using Autoencoders” on page 2-190

. “Define Text Decoder Model Function” on page 2-209

. “Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)

2-208

Define Text Decoder Model Function

Define Text Decoder Model Function

This example shows how to define a text decoder model function.

In the context of deep learning, a decoder is the part of a deep learning network that maps a latent
vector to some sample space. You can use decode the vectors for various tasks. For example,

» Text generation by initializing a recurrent network with the encoded vector.

* Sequence-to-sequence translation by using the encoded vector as a context vector.

» Image captioning by using the encoded vector as a context vector.

Load Data

Load the encoded data from sonnetsEncoded.mat. This MAT file contains the word encoding, a
mini-batch of sequences X, and the corresponding encoded data Z output by the encoder used in the
example “Define Text Encoder Model Function” (Deep Learning Toolbox).

= load("sonnetsEncoded.mat");
= s.enc;
s.X;
s.Z;

n

NX0D w
@]

[latentDimension,miniBatchSize] = size(Z,1:2);
Initialize Model Parameters
The goal of the decoder is to generate sequences given some initial input data and network state.

Initialize the parameters for the following model.

2-209

2 Modeling and Prediction

2-210

Yt

)

Fully Connect

1

State —» LSTM

1

Embedding

1

Lt

Updated
State

The decoder reconstructs the input using an LSTM initialized the encoder output. For each time step,
the decoder predicts the next time step and uses the output for the next time-step predictions. Both
the encoder and the decoder use the same embedding.

This model uses three operations:

* The embedding maps word indices in the range 1 though vocabularySize to vectors of
dimension embeddingDimension, where vocabularySize is the number of words in the
encoding vocabulary and embeddingDimension is the number of components learned by the
embedding.

* The LSTM operation takes as input a single word vector and outputs 1-by-numHiddenUnits
vector, where numHiddenUnits is the number of hidden units in the LSTM operation. The initial
state of the LSTM network (the state at the first time-step) is the encoded vector, so the number of
hidden units must match the latent dimension of the encoder.

* The fully connected operation multiplies the input by a weight matrix adding bias and outputs
vectors of size vocabularySize.

Specify the dimensions of the parameters. The embedding sizes must match the encoder.

embeddingDimension = 100;
vocabularySize = enc.NumWords;
numHiddenUnits latentDimension;

Create a struct for the parameters.

parameters = struct;

Define Text Decoder Model Function

Initialize the weights of the embedding using the Gaussian using the initializeGaussian function
which is attached to this example as a supporting file. Specify a mean of 0 and a standard deviation of
0.01. To learn more, see “Gaussian Initialization” (Deep Learning Toolbox).

sz = [embeddingDimension vocabularySize];
mu = 0;
sigma = 0.01;

parameters.emb.Weights = initializeGaussian(sz,mu,sigma);
Initialize the learnable parameters for the decoder LSTM operation:

* [Initialize the input weights with the Glorot initializer using the initializeGlorot function
which is attached to this example as a supporting file. To learn more, see “Glorot Initialization”
(Deep Learning Toolbox).

* [Initialize the recurrent weights with the orthogonal initializer using the initializeOrthogonal
function which is attached to this example as a supporting file. To learn more, see “Orthogonal
Initialization” (Deep Learning Toolbox).

* Initialize the bias with the unit forget gate initializer using the initializeUnitForgetGate
function which is attached to this example as a supporting file. To learn more, see “Unit Forget
Gate Initialization” (Deep Learning Toolbox).

The sizes of the learnable parameters depend on the size of the input. Because the inputs to the
LSTM operation are sequences of word vectors from the embedding operation, the number of input
channels is embeddingDimension.

* The input weight matrix has size 4*numHiddenUnits-by-inputSize, where inputSize is the
dimension of the input data.

* The recurrent weight matrix has size 4*numHiddenUnits-by-numHiddenUnits.

* The bias vector has size 4*numHiddenUnits-by-1.

sz = [4*numHiddenUnits embeddingDimension];
numOut = 4*numHiddenUnits;
numIn = embeddingDimension;

parameters.lstmDecoder.InputWeights = initializeGlorot(sz,numOut,numIn);
parameters.lstmDecoder.RecurrentWeights = initializeOrthogonal([4*numHiddenUnits numHiddenUnits]
parameters.lstmDecoder.Bias = initializeUnitForgetGate(numHiddenUnits);

Initialize the learnable parameters for the encoder fully connected operation:

* Initialize the weights with the Glorot initializer.

+ Initialize the bias with zeros using the initializeZeros function which is attached to this
example as a supporting file. To learn more, see “Zeros Initialization” (Deep Learning Toolbox).

The sizes of the learnable parameters depend on the size of the input. Because the inputs to the fully
connected operation are the outputs of the LSTM operation, the number of input channels is
numHiddenUnits. To make the fully connected operation output vectors with size
latentDimension, specify an output size of latentDimension.

* The weights matrix has size outputSize-by-inputSize, where outputSize and inputSize
correspond to the output and input dimensions, respectively.

* The bias vector has size outputSize-by-1.

2-211

2 Modeling and Prediction

2-212

To make the fully connected operation output vectors with size vocabularySize, specify an output
size of vocabularySize.

sz = [vocabularySize numHiddenUnits];
mu = 0;
sigma = 1;

parameters.fcDecoder.Weights = initializeGaussian(sz,mu,sigma);
parameters.fcDecoder.Bias = initializeZeros([vocabularySize 1]);

Define Model Decoder Function

Create the function modelDecoder, listed in the Decoder Model Function on page 2-214 section of
the example, that computes the output of the decoder model. The modelDecoder function, takes as
input sequences of word indices, the model parameters, and the sequence lengths, and returns the
corresponding latent feature vector.

Use Model Function in Model Loss Function

When training a deep learning model with a custom training loop, you must calculate the loss and
gradients of the loss with respect to the learnable parameters. This calculation depends on the output
of a forward pass of the model function.

There are two common approaches to generating text data with a decoder:

1 Closed loop — For each time step, make predictions using the previous prediction as input.

2 Open loop — For each time step, make predictions using inputs from an external source (for
example, training targets).

Closed Loop Generation

Closed loop generation is when the model generates data one time-step at a time and uses the
previous prediction as input for the next prediction. Unlike open loop generation, this process does
not require any input between predictions and is best suited for scenarios without supervision. For
example, a language translation model that generates output text in one go.

Initialize the hidden state of the LSTM network with the encoder output Z.

state = struct;
state.HiddenState = Z;
state.CellState = zeros(size(Z),'like',Z);

For the first time step, use an array of start tokens as input for the decoder. For simplicity, extract an
array of start tokens from the first time-step of the training data.

decoderInput = X(:,:,1);

Preallocate the decoder output to have size numClasses-by-miniBatchSize-by-sequencelLength
with the same datatype as d1X, where sequencelLength is the desired length of the generation, for
example, the length of the training targets. For this example, specify a sequence length of 16.

sequencelength = 16;
Y = zeros(vocabularySize,miniBatchSize, sequencelLength, "like",X);
Y = dlarray(Y,"CBT");

For each time step, predict the next time step of the sequence using the modelDecoder function.
After each prediction, find the indices corresponding to the maximum values of the decoder output
and use these indices as the decoder input for the next time step.

Define Text Decoder Model Function

for t = 1l:sequencelLength
[Y(:,:,t), state] = modelDecoder(parameters,decoderInput,state);

[~,1idx] = max(Y(:,:,t));
decoderInput = idx;
end

The output is a vocabularySize-by-miniBatchSize-by-sequencelLength array.
size(Y)
ans = 1x3

3595 32 16

This code snippet shows an example of performing closed loop generation in a model gradients
function.

function [loss,gradients] = modellLoss(parameters,X, sequencelLengths)

% Encode input.

Z = modelEncoder(parameters, X, sequenceLengths);
% Initialize LSTM state.

state = struct;

state.HiddenState = Z;

state.CellState = zeros(size(Z),"like",Z);

% Initialize decoder input.
decoderInput = X(:,:,1);

% Closed loop prediction.
sequencelength = size(X,3);
Y = zeros(numClasses,miniBatchSize, sequencelLength, "like",X);
for t = l:sequencelength
[Y(:,:,t), state] = modelDecoder(parameters,decoderInput,state);

[~,idx] = max(Y(:,:,t));
decoderInput = idx;
end

Calculate loss.

o® o°

Calculate gradients.

o® o°

end

Open Loop Generation: Teacher Forcing

When training with closed loop generation, predicting the most likely word for each step in the
sequence can lead to suboptimal results. For example, in an image captioning workflow, if the
decoder predicts the first word of a caption is "a" when given an image of an elephant, then the
probability of predicting "elephant" for the next word becomes much more unlikely because of the
extremely low probability of the phrase "a elephant" appearing in English text.

2-213

2 Modeling and Prediction

To help the network converge faster, you can use teacher forcing: use the target values as input to
the decoder instead of the previous predictions. Using teacher forcing helps the network to learn
characteristics from the later time steps of the sequences without having to wait for the network to
correctly generate the earlier time steps of the sequences.

To perform teacher forcing, use the modelEncoder function directly with the target sequence as
input.

Initialize the hidden state of the LSTM network with the encoder output Z.
state = struct;

state.HiddenState = Z;

state.CellState = zeros(size(Z),"like",Z);

Make predictions using the target sequence as input.

Y = modelDecoder(parameters,X,state);

The output is a vocabularySize-by-miniBatchSize-by-sequencelLength array, where
sequencelength is the length of the input sequences.

size(Y)
ans = 1x3

3595 32 14

This code snippet shows an example of performing teacher forcing in a model gradients function.

function [loss,gradients] = modellLoss(parameters, X, sequencelLengths)

% Encode input.
Z = modelEncoder(parameters,X);

% Initialize LSTM state.

state = struct;

state.HiddenState = Z;

state.CellState = zeros(size(Z),"like",Z);

% Teacher forcing.
= modelDecoder(parameters,X,state);

=<

Calculate loss.

o° of

Calculate gradients.

o° of

end
Decoder Model Function

The modelDecoder function, takes as input the model parameters, sequences of word indices, and
the network state, and returns the decoded sequences.

Because the 1stm function is stateful (when given a time series as input, the function propagates and
updates the state between each time step) and that the embed and fullyconnect functions are

2-214

Define Text Decoder Model Function

time-distributed by default (when given a time series as input, the functions operate on each time
step independently), the modelDecoder function supports both sequence and single time-step
inputs.

function [Y,state] = modelDecoder(parameters,X,state)

% Embedding.
weights = parameters.emb.Weights;
X = embed(X,weights);

% LSTM.

inputWeights = parameters.lstmDecoder.InputWeights;
recurrentWeights = parameters.lstmDecoder.RecurrentWeights;
bias = parameters.lstmDecoder.Bias;

hiddenState = state.HiddenState;
cellState = state.CellState;

[Y,hiddenState,cellState] = lstm(X,hiddenState,cellState,
inputWeights, recurrentWeights,bias);

state.HiddenState = hiddenState;
state.CellState = cellState;

% Fully connect.

weights = parameters.fcDecoder.Weights;
bias = parameters.fcDecoder.Bias;

Y = fullyconnect(Y,weights,bias);

end

See Also
wordEncoding | word2ind | doc2sequence | tokenizedDocument

More About

. “Classify Text Data Using Deep Learning” on page 2-90

. “Classify Text Data Using Convolutional Neural Network” on page 2-98

. “Sequence-to-Sequence Translation Using Attention” on page 2-135

. “Generate Text Using Autoencoders” on page 2-190

. “Define Text Encoder Model Function” on page 2-202

. “Define Custom Training Loops, Loss Functions, and Networks” (Deep Learning Toolbox)

2-215

2 Modeling and Prediction

Classify Out-of-Memory Text Data Using Custom Mini-Batch
Datastore

2-216

This example shows how to classify out-of-memory text data with a deep learning network using a
custom mini-batch datastore.

A mini-batch datastore is an implementation of a datastore with support for reading data in batches.
You can use a mini-batch datastore as a source of training, validation, test, and prediction data sets
for deep learning applications. Use mini-batch datastores to read out-of-memory data or to perform
specific preprocessing operations when reading batches of data.

When training the network, the software creates mini-batches of sequences of the same length by
padding, truncating, or splitting the input data. The trainingOptions function provides options to
pad and truncate input sequences, however, these options are not well suited for sequences of word
vectors. Furthermore, this function does not support padding data in a custom datastore. Instead, you
must pad and truncate the sequences manually. If you left-pad and truncate the sequences of word
vectors, then the training might improve.

The “Classify Text Data Using Deep Learning” on page 2-90 example manually truncates and pads all
the documents to the same length. This process adds lots of padding to very short documents and
discards lots of data from very long documents.

Alternatively, to prevent adding too much padding or discarding too much data, create a custom mini-
batch datastore that inputs mini-batches into the network. The custom mini-batch datastore
textDatastore.m converts mini-batches of documents to sequences or word indices and left-pads
each mini-batch to the length of the longest document in the mini-batch. For sorted data, this
datastore can help reduce the amount of padding added to the data since documents are not padded
to a fixed length. Similarly, the datastore does not discard any data from the documents.

This example uses the custom mini-batch datastore textDatastore, attached to this example as a
supporting file. To access this file, open the example as a live script. You can adapt this datastore to
your data by customizing the functions. For an example showing how to create your own custom mini-
batch datastore, see “Develop Custom Mini-Batch Datastore” (Deep Learning Toolbox).

Load Pretrained Word Embedding

The datastore textDatastore requires a word embedding to convert documents to sequences of
vectors. Load a pretrained word embedding using fastTextWordEmbedding. This function requires
Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support
package. If this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;
Create Mini-Batch Datastore of Documents

Create a datastore that contains the data for training. The custom mini-batch datastore
textDatastore reads predictors and labels from a CSV file. For the predictors, the datastore
converts the documents into sequences of word indices and for the responses, the datastore returns a
categorical label for each document. For more information about creating custom mini-batch
datastores, see “Develop Custom Mini-Batch Datastore” (Deep Learning Toolbox).

For the training data, specify the CSV file "factoryReports.csv" and that the text and labels are
in the columns "Description" and "Category" respectively.

Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore

filenameTrain = "factoryReports.csv";

textName = "Description”;

labelName = "Category";

dsTrain = textDatastore(filenameTrain, textName, labelName, emb)

dsTrain =
textDatastore with properties:

ClassNames: ["Electronic Failure" "Leak" "Mechanical Failure" "Software Fai
Datastore: [1x1 matlab.io.datastore.TransformedDatastore]
EmbeddingDimension: 300
LabelName: "Category"
MiniBatchSize: 128
NumClasses: 4
NumObservations: 480

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include a sequence
input layer and set the input size to the embedding dimension. Next, include an LSTM layer with 180
hidden units. To use the LSTM layer for a sequence-to-label classification problem, set the output
mode to 'last'. Finally, add a fully connected layer with output size equal to the number of classes,
a softmax layer, and a classification layer.

numFeatures = dsTrain.EmbeddingDimension;
numHiddenUnits = 180;
numClasses = dsTrain.NumClasses;

layers = [...
sequencelnputLayer(numFeatures)
lstmLayer(numHiddenUnits, 'OutputMode', 'last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

Specify the training options. Specify the solver to be 'adam' and the gradient threshold to be 2. The
datastore textDatastore.m does not support shuffling, so set 'Shuffle', to 'never'. For an
example showing how to implement a datastore with support for shuffling, see “Develop Custom
Mini-Batch Datastore” (Deep Learning Toolbox). To monitor the training progress, set the 'Plots'
option to 'training-progress'. To suppress verbose output, set 'Verbose' to false.

By default, trainNetwork uses a GPU if one is available. To specify the execution environment
manually, use the 'ExecutionEnvironment' name-value pair argument of trainingOptions.
Training on a CPU can take significantly longer than training on a GPU. Training using a GPU
requires Parallel Computing Toolbox™ and a supported GPU device. For information on supported
devices, see “GPU Computing Requirements” (Parallel Computing Toolbox).

miniBatchSize = 128;
numObservations = dsTrain.NumObservations;
numIterationsPerEpoch = floor(numObservations / miniBatchSize);

options = trainingOptions('adam',
'MiniBatchSize',miniBatchSize,
'GradientThreshold', 2,
'Shuffle', 'never',
'Plots', 'training-progress',
'Verbose', false);

2-217

2 Modeling and Prediction

Train the LSTM network using the trainNetwork function.

net = trainNetwork(dsTrain, layers,options);

Training Progress (15-Jan-2020 17:43:55)

100 [—

% [

-

60 —

Accuracy (%)

40—

20

0

1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 20 100
Iteration

| 1 | | | | J
0
0 10 20 30 40 50 60 70 80 90 100
Iteration

Results
“alidation accuracy, NiA
Training finished;

Training Time

E=rE=]

Reached final iteration

Start time: 15-Jan-2020 17:43:55

Elapsed time: 63560

Training Cycle
Epoch: 30 0f 30
teration: a0

validation
Frequency NiA
Other Information
Hardware resource:
Learning rate schedule: Gonstant
Learning rate: 0.001

Learn more

Accuracy

Training (smoothed)
Training
— - - Vaidation

Loss

Training (smoothed)
Training
~ -~ - Vaidation

Single GPU

Predict Using New Data

Classify the event type of three new reports. Create a string array containing the new reports.

reportsNew = [
"Coolant is pooling underneath sorter."
"Sorter blows fuses at start up."

"There are some very loud rattling sounds coming from the assembler."];

Preprocess the text data using the preprocessing steps as the datastore textDatastore.

documents = tokenizedDocument(reportsNew);
documents = lower(documents);
documents = erasePunctuation(documents);

predictors = doc2sequence(emb,documents);

Classify the new sequences using the trained LSTM network.

labelsNew = classify(net,predictors)
labelsNew = 3x1 categorical
Leak

Electronic Failure

2-218

Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore

Mechanical Failure

See Also

wordEmbeddinglLayer | doc2sequence | tokenizedDocument | LstmLayer | trainNetwork |
trainingOptions | sequenceInputLayer |wordcloud | extractHTMLText | findElement |
htmlTree

Related Examples

“Generate Text Using Deep Learning” (Deep Learning Toolbox)

“Create Simple Text Model for Classification” on page 2-2

“Analyze Text Data Using Topic Models” on page 2-13

“Analyze Text Data Using Multiword Phrases” on page 2-7

“Train a Sentiment Classifier” on page 2-71

“Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
“Deep Learning in MATLAB” (Deep Learning Toolbox)

2-219

Display and Presentation

* “Visualize Text Data Using Word Clouds” on page 3-2
* “Visualize Word Embeddings Using Text Scatter Plots” on page 3-8

3 Display and Presentation

Visualize Text Data Using Word Clouds

3-2

This example shows how to visualize text data using word clouds.

Text Analytics Toolbox extends the functionality of the wordcloud (MATLAB) function. It adds
support for creating word clouds directly from string arrays and creating word clouds from bag-of-
words models and LDA topics.

Load the example data. The file factoryReports.csv contains factory reports, including a text
description and categorical labels for each event.

filename = "factoryReports.csv";
tbl = readtable(filename, 'TextType', 'string');

Extract the text data from the Description column.

textData = tbl.Description;
textData(1:10)

ans = 10x1 string
"Items are occasionally getting stuck in the scanner spools."
"Loud rattling and banging sounds are coming from assembler pistons."
"There are cuts to the power when starting the plant."
"Fried capacitors in the assembler."
"Mixer tripped the fuses."
"Burst pipe in the constructing agent is spraying coolant."
"A fuse is blown in the mixer."
"Things continue to tumble off of the belt."
"Falling items from the conveyor belt."
"The scanner reel is split, it will soon begin to curve."

Create a word cloud from the reports.

figure
wordcloud(textData);
title("Factory Reports")

Visualize Text Data Using Word Clouds

Factory Reports

spraying -
occasionally spilling signs

overheat

programming he|t fee
overheatmg coqELant fails

constructin
stuck ; g

assSemblér,,

t| Me mbent a rm

MIXEer;

engine
continues

== heard

undameat

starting

= agent
| fuse

emitted
conveyor

tripped SMOKe

Pant controller =

jammed b|OW hot

connect
rattling o
showing cracked coming Off ° Transpfon

interface |Ea|{|ﬂg classifier

S0 ymexpectedly righ-piichad

pipe Loud miting

Soun

sometimes peginning

electrical
Th

ings

appeaﬂng

items

sorting

oftware ...
'sorter swo

ObOt materleal coy

keSCANNEI o~

reel Exramea

d products

|n5|de

ROLR

Compare the words in the reports with labels "Leak" and "Mechanical Failure". Create word
clouds of the reports for each of these labels. Specify the word colors to be blue and magenta for

each word cloud respectively.

figure
labels = tbl.Category;

subplot(1,2,1)

idx = labels == "Leak";
wordcloud(textData(idx), '
title("Leak")

Color','blue');

subplot(1,2,2)

idx = labels == "Mechanical Failure";
wordcloud(textData(idx), 'Color', 'magenta');
title("Mechanical Failure")

3 Display and Presentation

Leak

Exftracl rary

spraying
E = | [E-Te e — e
== Blender
o s | omal by

everywhere 5P|||"'|£I eakage
assemblerpm
_overheating

- Maﬂena] = bottom

- NIXEer=

underneath ;. place

coolant“

soﬂmg
aorleaking =

vt Pipe Ilqmd
Extreme sevesrs ..
cooling gent o
- Burst _.
constructing

Mechanical Failure

cortdree

= Transport
Aty s

jammed agent
CONVEYOr — _ beginning
W'Fﬁﬂ 5 cracked
g mixer,_ ===
material-- i = ght
dUG‘tS ine

<nowing A stuck inside
-time SOU ndbelt

- Scanner....
~ assembler ==

bshed

heard Spools fallsires

Loud wear

rDth |tem5 Qet spin
- appearing

sorter :'EF'F res|

rattling
sometimes

constructing

shaking

Compare the words in the reports with urgency "Low", "Medium", and "High".

figure
urgency = tbl.Urgency;

subplot(1,3,1)

idx = urgency == "Low";
wordcloud(textData(idx));
title("Urgency: Low")

subplot(1,3,2)

idx = urgency == "Medium";
wordcloud(textData(idx));
title("Urgency: Medium")

subplot(1,3,3)

idx = urgency == "High";
wordcloud(textData(idx));
title("Urgency: High")

3-4

Visualize Text Data Using Word Clouds

Urgency: Low

maberial
high-patchexd

cracked
constructing
spools sometimes

cccaslonally Off

+ Rattiing ™
ceei® Rigard e
controller e
= - g
assembler
SGEIFIF‘IBI’ '

bk,

cratea m |}{e|' e
electrical . Sk

SouNd stuex
,whine fa-:n:f blender
time USE tripped

" robot agEﬂt -
mier software
falling __ inside
) Blown ueg

products evemsa:
overheating

s

amming

i

g

Urgency: Medium

-l.;lexp-ec:\etl;,-
Things
consinucing
appearing -
b-eilrrlr-: il

e-l:l {:ts
gz

agent Tre nsp::- t

Pexxr battamn Nadd

bent gtuck -
cracked . 8 cound
spit MiXer o

It'E ms [Wear
assembler
SCEIH er

'speels u
get
""-‘"_'"‘C SDI"tE‘r

. Material -
i Conveyor 4, slight
staring FObot reming
ach [iNE '5"9“' "g
sefh'.rare P

bendlng -
Jammed ==

55

_ owerheadng

Urgency: High

spray s:s-:r;
overheatimng
appearnng
spiing leaking
N EUDF”Y I:u.u:
sanp Robot 5_31"9
- agent pipe
assembler

DWQI’
P W blander

wandrey

-:eﬂ.s

fallad
black
ﬂ utsFuse Pl

smoke =

" Bk U

eeelsnt
SEEI‘II‘IE[

censtmetmg
m..

capacitors
emitted

engire

Compare the words in the reports with cost reported in hundreds of dollars to the reports with costs
reported in thousands of dollars. Create word clouds of the reports for each of these amounts with
highlight color blue and red respectively.

cost = tbl.Cost;
idx = cost > 100;
figure

wordcloud(textData(idx), 'HighlightColor'

title("Cost > $100")

, 'blue');

3 Display and Presentation

Cost > $100
cracking everywhere
capacitors e
unexpectedly P failed spools

. leaking I&o%&re supply sering

engne plant ASSEMDIEr freezes <cone

connect spilling

- agent SMoKe. blender =

crashing

sy PIPS POWEr iy @ Plown wiear

Conveyor ot up F k o
black Sort use floo I taiure

Extrerne Al S Ca n n e rJ = ek amitted

ot OVErheating b = Robot interface

oy sy CONTrollersus s
arting 08"”0| 57t constructing

beginning down
programming

" bending

pace

Burst
underneath

idx = cost > 1000;

figure

wordcloud(textData(idx), 'HighlightColor', 'red');
title("Cost > $1,000")

3-6

Visualize Text Data Using Word Clouds

Cost > $1,000

| e lele@sing
time Consistent construction
- Shut closed . e

==mer QVErheating ...
blender cuts Robot sorter exera

ng?;:gn S Ca n n e r Dark beginning
= sorting S G””S‘ab Startlng
engine cracks s T
S black Y arm E;‘;?”;';‘r?ﬁp

power mixer startup -

O casional boards ghuc
causing

appearing p |a Nt emitting

Extreme radiating

sparks outer
unéxpectedly”

S PLRICAT

See Also
wordcloud | tokenizedDocument | bagOfWords

Related Examples
“Prepare Text Data for Analysis” on page 1-11
“Analyze Text Data Using Topic Models” on page 2-13
“Classify Text Data Using Deep Learning” on page 2-90
“Visualize Word Embeddings Using Text Scatter Plots” on page 3-8

3-7

3 Display and Presentation

Visualize Word Embeddings Using Text Scatter Plots

This example shows how to visualize word embeddings using 2-D and 3-D t-SNE and text scatter
plots.

Word embeddings map words in a vocabulary to real vectors. The vectors attempt to capture the
semantics of the words, so that similar words have similar vectors. Some embeddings also capture
relationships between words like "Italy is to France as Rome is to Paris". In vector form, this
relationship is Italy — Rome + Paris = France.

Load Pretrained Word Embedding

Load a pretrained word embedding using fastTextWordEmbedding. This function requires Text
Analytics Toolbox™ Model for fastText English 16 Billion Token Word Embedding support package. If
this support package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x999994 string]

Explore the word embedding using word2vec and vec2word. Convert the words Italy, Rome, and
Paris to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb, "Rome");
paris = word2vec(emb, "Paris");

Compute the vector given by italy - rome + paris. This vector encapsulates the semantic
meaning of the word Italy, without the semantics of the word Rome, and also includes the semantics
of the word Paris.

vec italy - rome + paris

vec 1x300 single row vector

0.1606 -0.0690 0.1183 -0.0349 0.0672 0.0907 -0.1820 -0.0080 0.0320 -0.(

Find the closest words in the embedding to vec using vec2word.
word = vec2word(emb, vec)

word =
"France"

Create 2-D Text Scatter Plot
Visualize the word embedding by creating a 2-D text scatter plot using tsne and textscatter.

Convert the first 5000 words to vectors using word2vec. V is a matrix of word vectors of length 300.

3-8

Visualize Word Embeddings Using Text Scatter Plots

words = emb.Vocabulary(1:5000);
V = word2vec(emb,words);
size(V)

ans = 1Ix2

5000 300

Embed the word vectors in two-dimensional space using tsne. This function may take a few minutes
to run. If you want to display the convergence information, then set the 'Verbose' name-value pair
to 1.

XY = tsne(V);

Plot the words at the coordinates specified by XY in a 2-D text scatter plot. For readability,
textscatter, by default, does not display all of the input words and displays markers instead.

figure

textscatter(XY,words)
title("Word Embedding t-SNE Plot")

Word Embedding t-SNE Plot

a0 T T
60T R
Labour board channel
40 b " military policecustomecarbon . i
China. . . peoplestudents moneglection
a0 b Smith New 4 life Program - law . role e
water . .
John Ged record work discussioffterview
's
0r yooode o YEA page position .
May Delete . ' test pejp face
main not post
20 The more use lost
aod open do
¢ > ﬂﬂmmdwmt
4o b 1 har = sai |
includeerved
&0k 2008 1
—BD I i i i i i
-80 60 =40 =20 0 20 40 60

Zoom in on a section of the plot.

xlim([-18 -5])
ylim([11 21])

3-9

3 Display and Presentation

3-10

Word Embedding t-SNE Plot

21 T T T
20 fish eggs rights
territory a}ea
t meat lafid
19 waters séa . E
soil Bay
arm .
18 climate surfacd M nd
17 - pool 1
*win .
icé «water air . spece
16T 7
sugar blood forte
15 pall -
coffes defensy
14 b h&at gjg ctricity]
jurisdiction
13 . energy ' _
drink . drugs off fuel P@‘:ﬁ;n g bese
12 F g 1
utility
_1_1 i i i i i i
-18 -16 -14 -12 =10 -8 -G

Create 3-D Text Scatter Plot
Visualize the word embedding by creating a 3-D text scatter plot using tsne and textscatter.

Convert the first 5000 words to vectors using word2vec. V is a matrix of word vectors of length 300.
words = emb.Vocabulary(1:5000);

V = word2vec(emb,words);

size(V)

ans = 1Ix2

5000 300

Embed the word vectors in a three-dimensional space using tsne by specifying the number of
dimensions to be three. This function may take a few minutes to run. If you want to display the
convergence information, then you can set the 'Verbose' name-value pair to 1.

XYZ = tsne(V, 'NumDimensions',3);
Plot the words at the coordinates specified by XYZ in a 3-D text scatter plot.
figure

ts = textscatter3(XYZ,words);
title("3-D Word Embedding t-SNE Plot")

Visualize Word Embeddings Using Text Scatter Plots

3-D Word Embedding t-SNE Plot

60 4

40 w’al il
2D | &n E PKED:E

100

Zoom in on a section of the plot.

x1im([12.04 19.48])
ylim([-2.66 3.40])
z1lim([10.03 14.53])

3-11

3 Display and Presentation

3-D Word Embedding t-SNE Plot

mainsream
14 |
classic
13 4
124 range gmerging
11 4 fresh
new

existing

14

Perform Cluster Analysis

Convert the first 5000 words to vectors using word2vec. V is a matrix of word vectors of length 300.

words = emb.Vocabulary(1:5000);
V = word2vec(emb,words);
size(V)

ans = 1x2

5000 300

Discover 25 clusters using kmeans.

cidx = kmeans(V,25, 'dist', 'sgeuclidean');

Visualize the clusters in a text scatter plot using the 2-D t-SNE data coordinates calculated earlier.
figure

textscatter(XY,words, 'ColorData',categorical(cidx));
title("Word Embedding t-SNE Plot")

3-12

Visualize Word Embeddings Using Text Scatter Plots

Word Embedding t-SNE Plot

60

—ED i i i i i i
-80 -60 -40 =20 0 20 40 60

Zoom in on a section of the plot.

xlim([13 24])
ylim([-47 -35])

3-13

3 Display and Presentation

Word Embedding t-SNE Plot

T bu T | :’IIIH T T

thought

42F 1

44 r

13 14 15 16 17 18 19 20 ey 22 23 24

See Also

readWordEmbedding | textscatter | textscatter3 |word2vec | vec2word | wordEmbedding |
tokenizedDocument

Related Examples

. “Extract Text Data from Files” on page 1-2

. “Prepare Text Data for Analysis” on page 1-11

. “Visualize Text Data Using Word Clouds” on page 3-2

. “Classify Text Data Using Deep Learning” on page 2-90

3-14

Language Support

+ “Language Considerations” on page 4-2

* “Japanese Language Support” on page 4-6

* “Analyze Japanese Text Data” on page 4-10

* “German Language Support” on page 4-20

* “Analyze German Text Data” on page 4-25

* “Korean Language Support” on page 4-36

* “Language-Independent Features” on page 4-38

4 Language Support

Language Considerations

4-2

Text Analytics Toolbox supports the languages English, Japanese, German, and Korean. Most Text
Analytics Toolbox functions also work with text in other languages. This table summarizes how to use
Text Analytics Toolbox features for other languages.

Feature

Language Consideration

Workaround

Tokenization

The tokenizedDocument
function has built-in rules for
English, Japanese, German, and
Korean only. For English and
German text, the 'unicode’
tokenization method of
tokenizedDocument detects
tokens using rules based on
Unicode® Standard Annex #29
[1] and the ICU tokenizer [2],
modified to better detect
complex tokens such as
hashtags and URLs. For
Japanese and Korean text, the
'mecab' tokenization method
detects tokens using rules based
on the MeCab tokenizer [3].

For other languages, you can
still try using
tokenizedDocument. If
tokenizedDocument does not
produce useful results, then try
tokenizing the text manually. To
create a tokenizedDocument
array from manually tokenized
text, set the
'TokenizeMethod' option to
‘none’.

For more information, see
tokenizedDocument.

Stop word removal

The stopWords and
removeStopWords functions
support English, Japanese,
German, and Korean stop words
only.

To remove stop words from
other languages, use
removeWords and specify your
own stop words to remove.

Sentence detection

The addSentenceDetails
function detects sentence
boundaries based on
punctuation characters and line
number information. For English
and German text, the function
also uses a list of abbreviations
passed to the function.

For other languages, you might
need to specify your own list of
abbreviations for sentence
detection. To do this, use the
'Abbreviations' option of
addSentenceDetails.

For more information, see
addSentenceDetails.

Language Considerations

Feature Language Consideration Workaround
Word clouds For string input, the wordcloud |For other languages, you might
and wordCloudCounts need to manually preprocess
functions use English, Japanese, |your text data and specify
German, and Korean unique words and
tokenization, stop word corresponding sizes in
removal, and word wordcloud.
normalization.
To specify word sizes in
wordcloud, input your data as
a table or arrays containing the
unique words and
corresponding sizes.
For more information, see
wordcloud.
Word embeddings File input to the For files containing non-English

trainWordEmbedding function
requires words separated by
whitespace.

text, you might need to input a
tokenizedDocument array to
trainWordEmbedding.

To create a
tokenizedDocument array
from pretokenized text, use the
tokenizedDocument function
and set the
'TokenizeMethod' option to
‘none’.

For more information, see
trainWordEmbedding.

Keyword extraction

The rakeKeywords function
supports English, Japanese,
German, and Korean text only.

The rakeKeywords function
extracts keywords using a
delimiter-based approach to
identify candidate keywords.
The function, by default, uses
punctuation characters and the
stop words given by the
stopWords with language given
by the language details of the
input documents as delimiters.

For other languages, specify an
appropriate set of delimiters
using the Delimiters and
MergingDelimiters options.

For more information, see
rakeKeywords.

4-3

4 Language Support

4-4

Feature Language Consideration Workaround
The textrankKeywords The textrankKeywords
function supports English, function extracts keywords by
Japanese, German, and Korean |identifying candidate keywords
text only. based on their part-of-speech

tag. The function uses part-of-
speech tags given by the
addPartO0fSpeechDetails
function which supports
English, Japanese, German, and
Korean text only.

For other languages, try using
the rakeKeywords instead and
specify an appropriate set of
delimiters using the
'Delimiters' and
'MergingDelimiters'
options.

For more information, see
textrankKeywords.

Language-Independent Features
Word and N-Gram Counting

The bag0OfWords and bag0fNgrams functions support tokenizedDocument input regardless of
language. If you have a tokenizedDocument array containing your data, then you can use these
functions.

Modeling and Prediction

The fitlda and fitlsa functions support bagOfWords and bagOfNgrams input regardless of
language. If you have a bagOfWords or bagOfNgrams object containing your data, then you can use
these functions.

The trainWordEmbedding function supports tokenizedDocument or file input regardless of
language. If you have a tokenizedDocument array or a file containing your data in the correct
format, then you can use this function.

References
[1] Unicode Text Segmentation. https://www.unicode.org/reports/tr29/
[2] Boundary Analysis. https://unicode-org.github.io/icu/userguide/boundaryanalysis/

[3] MeCab: Yet Another Part-of-Speech and Morphological Analyzer. https://taku910.github.io/mecab/

https://www.unicode.org/reports/tr29/
https://unicode-org.github.io/icu/userguide/boundaryanalysis/
https://taku910.github.io/mecab/

Language Considerations

See Also

stopWords | removeWords | normalizeWords | bag0fWords | bagOfNgrams |
tokenizedDocument | fitlda | fitlsa | wordcloud | addSentenceDetails |
addLanguageDetails

More About

. “Text Data Preparation”

. “Modeling and Prediction”
. “Display and Presentation”

. “Japanese Language Support” on page 4-6
. “Analyze Japanese Text Data” on page 4-10
. “German Language Support” on page 4-20
. “Analyze German Text Data” on page 4-25

4 Language Support

Japanese Language Support

4-6

This topic summarizes the Text Analytics Toolbox features that support Japanese text. For an example
showing how to analyze Japanese text data, see “Analyze Japanese Text Data” on page 4-10.

Tokenization

The tokenizedDocument function automatically detects Japanese input. Alternatively, set the
"Language’ option in tokenizedDocument to 'ja'. This option specifies the language details of
the tokens. To view the language details of the tokens, use tokenDetails. These language details
determine the behavior of the removeStopWords, addPart0fSpeechDetails, normalizeWords,
addSentenceDetails, and addEntityDetails functions on the tokens.

To specify additional MeCab options for tokenization, create a mecabOptions object. To tokenize
using the specified MeCab tokenization options, use the 'TokenizeMethod' option of
tokenizedDocument.

Tokenize Japanese Text

Tokenize Japanese text using tokenizedDocument. The function automatically detects Japanese
text.

str = [
"IRITINA. BLT, "
"EDWATELD, "
"EIZEHLESE, BT, "
"EQEMNESFIEL TS, "];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

6 tokens: 7% [T ¥A& . EBELD
6 tokens: X @ & T HLL
10 tokens: ZE [2 M EE= . B T W5,
10 tokens: & M 2 M EE F L T W5,

Part of Speech Details

The tokenDetails function, by default, includes part of speech details with the token details.

Get Part of Speech Details of Japanese Text

Tokenize Japanese text using tokenizedDocument.

str = [
"IRITINA,. BLT, "
"EDWNAT BEELD, "
"EIZEMNES, RLOTWLS, "
"EQEMNESFELTWS, "
"ERETIXZEL T, HHFAEL, "

Japanese Language Support

"ELDERETHIFAEL, "
"FEEHEE3E3EBDS55, "];
documents = tokenizedDocument(str);

For Japanese text, you can get the part-of-speech details using tokenDetails. For English text, you
must first use addPartOfSpeechDetails.

tdetails = tokenDetails(documents);

head(tdetails)
Token DocumentNumber LineNumber Type Language Part0fSpeech Lemma
"R 1 1 letters ja noun "R
ez 1 1 letters ja adposition tz
" 1 1 letters ja verb R
o 1 1 punctuation ja punctuation o
"mELD" 1 1 letters ja verb "ELD
oo 1 1 punctuation ja punctuation o
"R 2 1 letters ja noun "R
"o 2 1 letters ja adposition "n"

Named Entity Recognition

The tokenDetails function, by default, includes entity details with the token details.

Add Named Entity Tags to Japanese Text

Tokenize Japanese text using tokenizedDocument.

str = [
"T)—SARRR UMD =2 —T—YIIE oL EL, "
"ERCTEHARSAICHZICITEET, "
"HIRIFKREYKREWNTI M2
"HRRICIT o 1B, FIBECESLEVWAWVWALGmEANEL, "];

documents = tokenizedDocument(str);

For Japanese text, the software automatically adds named entity tags, so you do not need to use the

addEntityDetails function. This software detects person names, locations, organizations, and

other named entities. To view the entity details, use the tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)

Token DocumentNumber LineNumber Type Language Part0fSpeech Ler
=) —=" 1 1 letters ja proper-noun ") -
"EA" 1 1 letters ja noun "EA"
" 1 1 letters ja adposition g
"RA R 1 1 letters ja proper-noun "R b
"M 1 1 letters ja adposition i
"Za—3—4" 1 1 letters ja proper-noun "Za-
iz 1 1 letters ja adposition ez
"Flo@L" 1 1 letters ja verb "5l i

4 Language Support

4-8

View the words tagged with entity "person", "location", "organization", or "other". These
words are the words not tagged "non-entity".

idx = tdetails.Entity ~= "non-entity";
tdetails(idx, :).Token

ans = 11x1 string
g i) —n
Ilé/\lll
"RX R
u:l_3_7u
"ERAR"
Ilé/\lll
Iliﬁll
PN
Iliﬁll
"HTE"

naE N1
=e

Stop Words

To remove stop words from documents according to the token language details, use
removeStopWords. For a list of Japanese stop words set the 'Language’ option in stopWords to
"ja'.

Remove Japanese Stop Words

Tokenize Japanese text using tokenizedDocument. The function automatically detects Japanese
text.

str = [
"ZZIEEMNEOT, ETHREONATT
"TENOBEET—FEFAL. SEOFTY LITERARDZ Z EAHEL, "
"FAEEAETT, RFEBEHATOET, "1;

documents = tokenizedDocument(str);

Remove stop words using removeStopWords. The function uses the language details from
documents to determine which language stop words to remove.

documents = removeStopWords (documents)

documents =
3x1 tokenizedDocument:

4 tokens: #M . &TH EOH

10 tokens: ft%¥ BT 7T—42 FIA . §F FTYLT FHARDS HxX .
5 tokens: %4 . EE HZ

Lemmatization

To lemmatize tokens according to the token language details, use normalizeWords and set the
'Style' optionto 'lemma’.

Japanese Language Support

Lemmatize Japanese Text

Tokenize Japanese text using the tokenizedDocument function. The function automatically detects
Japanese text.

str = [
"EIZEMNES, RLOATWLS, "
"EDEMNMEZTEBLTLD, "
"BRETIZELC T, HF%EL, "
"B DERETHTGEL, "
documents = tokenizedDocument(str);

Lemmatize the tokens using normalizeWords.
documents = normalizeWords(documents)

documents =
4x1 tokenizedDocument:

10 tokens: Z 2 E A #< . B T W5,
10 tokens: & M 2 M EE F I T W5,
9 tokens: BR T (X &L T . FHIFdH %L,
7 tokens: =< M ER £T H+5 7L

Language-Independent Features
Word and N-Gram Counting

The bag0fWords and bag0fNgrams functions support tokenizedDocument input regardless of
language. If you have a tokenizedDocument array containing your data, then you can use these
functions.

Modeling and Prediction

The fitlda and fitlsa functions support bagOfWords and bagO0fNgrams input regardless of
language. If you have a bag0OfWords or bagOfNgrams object containing your data, then you can use
these functions.

The trainWordEmbedding function supports tokenizedDocument or file input regardless of
language. If you have a tokenizedDocument array or a file containing your data in the correct
format, then you can use this function.

See Also
tokenizedDocument | removeStopWords | stopWords | addPart0fSpeechDetails |
tokenDetails | normalizeWords | addLanguageDetails | addEntityDetails

More About

. “Language Considerations” on page 4-2
. “Analyze Japanese Text Data” on page 4-10

4-9

4 Language Support

Analyze Japanese Text Data

This example shows how to import, prepare, and analyze Japanese text data using a topic model.

Japanese text data can be large and can contain lots of noise that negatively affects statistical
analysis. For example, the text data can contain the following:
* Variations in word forms. For example, "L U\" ("is difficult") and "#LM->7=" ("was difficult")

» Words that add noise. For example, stop words such as "#%%Z" ("over there"), "#7=Y" ("around"),
and "®55" ("there")

* Punctuation and special characters

These word clouds illustrate word frequency analysis applied to some raw text data from "&ZEIXIET
»5" by EB#H, and a preprocessed version of the same text data.

Raw Data Clean Data
: R T
e IELY tﬂﬂééﬁf%
jJ\"EJ ?.Z:I ‘LLI'I_C'E_J' /l\»FIEﬂ :L,\'j' B s
- - AR Sk (AAYP
£ ﬁ\ . . -
7 . 7___?({_ -m " H:r%, -1 7/ Hjé
Je 03 b s W

8 2 Y o 232,

'B(:’:' -~ " = e
20 P\ = FA Eéﬁ(
] el m_
: .;ar %éfj % 18
- ' YRR T %13
o L=z mEL +4
PR ™ L

ELE

This example first shows how to import and prepare Japanese text data, and then it shows how to
analyze the text data using a Latent Dirichlet Allocation (LDA) model. An LDA model is a topic model
that discovers underlying topics in a collection of documents and infers the word probabilities in
topics. Use these steps in preparing the text data and fitting the model:

* Read HTML code from a website.
» Parse the HTML code and extract the relevant data.

* Prepare the text data for analysis using standard preprocessing techniques.

4-10

Analyze Japanese Text Data

» Fit a topic model and visualize the results.

Import Data

Read the data from "BEZ(LIETHS" by B B# A from https://www.aozora.gr.jp/cards/000148/files/
789 14547.html using the webread function.

Specify the character encoding of the text using the weboptions function. To find the correct
character encoding for an HTML, look in the header of the HTML code. For this file, specify the
character encoding to be "Shift JIS".

url = "https://www.aozora.gr.jp/cards/000148/files/789 14547.html";
options = weboptions('CharacterEncoding','Shift JIS"');
code = webread(url,options);

View the first few lines of the HTML code.
extractBefore(code, "<script")

ans =

'<?xml version="1.0" encoding="Shift JIS"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11l.dtd">

<html xml:lang="ja" >

<head>
<meta http-equiv="Content-Type" content="text/html;charset=Shift JIS" />
<meta http-equiv="content-style-type" content="text/css" />
<link rel="stylesheet" type="text/css" href="../../aozora.css" />
<title>EB#EA BEIXETHL</title>

Extract the text data from the HTML using extractHTMLText. Split the text by newline characters.

textData = extractHTMLText(code);
textData = string(split(textData,newline));
textData(1:10)

ans = 10x1 string array
"BEEIETHD"
"EE®A"

" EBEFETHD, BAEIEELEN, "
" EITHENEDNEALREN OO, AITHEERVLCLOHLD LT y—= vy —H VT ELETFEREEL TS, &
Remove the empty lines of text.
idx = textData == "";
textData(idx) = [];
textData(1:10)

ans = 10x1 string array
"BEEIETHD"

4-11

https://www.aozora.gr.jp/cards/000148/files/789_14547.html
https://www.aozora.gr.jp/cards/000148/files/789_14547.html

4 Language Support

"ERRE"

" BEIIETHDH, BRINTELZEN, "

" EITENENEALERYEN DDA, AITHEBOLCOLDO LTI y—=ry— T EELEFEFEEL TS, B

" ZDEEDENDETLESCITRIVDMFICEASTE =M. LIESKTHELEEELENTEE LIENDTz, EENH DA

"ARERBMTWTRBEEZEEFIVAEL, L ESAEERENA—EIRZH, FOOBEIZZLZELTLE>=, TD L

" EIPKDBRVWTEREFZFEVETERSICRKEGMASH D, BEFMODANL>TES LEzoEMnA53EEZATR, Al

" BEDEANIBZICEELEESTSIENGL, BEIBEEZSE, ERMLRIERBAEFICEAZTYIEFELAL!
Visualize the text data in a word cloud.

figure
wordcloud(textData);

R

H —hig .
“ ib m fvT i

k¢ -

o 1#-3 17< -1
bh3d N2 nﬁ' EZ_% i)
W HEL s E g5 #n

PR mo O ﬁ*ﬂ:I B3

|eia 5 & GERN R A i—'E ANB
LA Ny £)”&t] i
L b = 228 o 1 1 me
. LJ% E = TH- 5 o
e HI JL‘;\‘) H . ;Eé e

iﬂﬂ%gﬂ s S EIEK ;Eg,m

o L
Tl BR H—Jlj'ﬁé AFﬁﬁ 3

PRLE !m% A HiEn

Tokenize Documents

Tokenize the text using tokenizedDocument and view the first few documents.

documents = tokenizedDocument(textData);
documents(1:10)

ans =
10x1 tokenizedDocument:

5 tokens: B#E (X 8 T H5
2 tokens: EH #HA

4-12

Analyze Japanese Text Data

0 tokens:
1 tokens: —
11 tokens: B# (£ 8 T H5 . A&#I & FZ &L
264 tokens: £Z T &h = »d EAE BRE A O B . i TH EEWL LHLH L 7 Ff T Zv—=v—
100 tokens: — ZE O E O E T LIESLC X &KW M 2 #5 T 82 = . LIEBL 5 & FkE
92 tokens: &é& &R M FY T RS & EE (& WL LY, KA B> =z s N —€ 3 RZ ¥,
693 tokens: &3%< M Bl T ER 7 BEVHET & MS I KEG M N $HD5 . BFE (Xt O @I (T £-
276 tokens: BZE O AN X WL I BE & B % 685 F M ALy o BE (X A 2 25 £ .
Get Part-of-Speech Tags
Get the token details and then view the details of the first few tokens.
tdetails = tokenDetails(documents);
head(tdetails)
ans=8x8 table
Token DocumentNumber LineNumber Type Language PartOfSpeech Lemma
"EIE" 1 1 letters ja pronoun "EE"
"E 1 1 letters ja adposition "E
" 1 1 letters ja noun "
" 1 1 letters ja auxiliary-verb "tz
"HB" 1 1 letters ja auxiliary-verb "HH"
"BB" 2 1 letters ja proper-noun "BB8"
e 2 1 letters ja proper-noun “EAR"
= 4 1 letters ja numeral =

The PartOfSpeech variable in the table contains the part-of-speech tags of the tokens. Create word

clouds of all the nouns and adjectives, respectively.

figure

idx = tdetails.PartOfSpeech == "noun";
tokens = tdetails.Token(idx);
subplot(1,2,1)

wordcloud(tokens);

title("Nouns")

idx = tdetails.PartOfSpeech == "adjective";
tokens = tdetails.Token(idx);
subplot(1,2,2)

wordcloud(tokens);

title("Adjectives")

4-13

FR 7

4 Language Support

Neuns

H"F #5

i EE T
£ mey iﬁt w

HE 95@
' A un
i fEE

wF I
= w Fae mxﬂ;

=N

B

E B
" %‘Eﬁ salr —'—= ':'EFJ

Prepare Text Data for Analysis

Remove the stop words.

documents = removeStopWords(documents);
documents(1:10)

ans =
10x1 tokenizedDocument:

2 tokens: BE ¥

2 tokens: EB #A

0 tokens:

0 tokens:

6 tokens: ZE B . FfZ &L

117 tokens: £h &tAE BRE OHh &

43 tokens: Z4 & E LIESC KUY F #£5 Bo .
o R —F Rz & .
323 tokens: £ 54K Bl ER EVET M5 KE4Q i,
122 tokens: B#E TN W% BB%E B 685 .

46 tokens: A& fFLy BB E4£

Erase the punctuation.

documents = erasePunctuation(documents);
documents(1:10)

ans =
10x1 tokenizedDocument:

4-14

BE 8

Adjectives

WhE B e
B L

}d"iybu By
ﬁ?L B\

003 e

ﬁ“xé" & ALV

imw _E_ ‘ "- ?'::.Efy
L d s

A REIE
il \ — L‘Lﬁﬂu .
SEChE
! b
ﬁELu ﬁ E ng,mu i

ER BN pzn

HrELLL
A AR o
i leﬁLLEL‘ LEA]
BEELL f‘l

. L_Er]n{j‘;uﬁ;-

CLHLSH —v—=+r— Il L\=F &
LIESC EE &EH i 180D
iy B3 £ IEL LE-
BE h #-5 =5 ot M) EZZ .
2R RS B EF EA- TYIFELALE B 3%

EE 1 AR &
B #< 7 a9

Analyze Japanese Text Data

2 tokens: BE ¥

2 tokens: EH #HA

0 tokens:

0 tokens:

4 tokens: EZE Ju £ £U

102 tokens: &£h AL B 2H H BFEL LHLO —vy—=+— iy LV=F BE FFE 1hH ARB &5 |
36 tokens: 4 £ E LIES< &KWy 1 &5 o LIESLK FEE FH B theh EF i < 95 E F
38 tokens: A& fFLy RS £4% o nE —F RZ & D B8 £ BL LEr-o £5 E-> £ KEIC LWL

274 tokens: k54K By R ENVET MRS KEH ih BFE ith £- 26 A EZ FlIT 05 25 &

101 tokens: &FZE F AN WE EFE B 485 BE L0 2R RS KA EF EA- TFUIFEALE H k5 X%

Lemmatize the text using normalizeWords.

documents = normalizeWords(documents);
documents(1:10)

ans =
10x1 tokenizedDocument:

2 tokens: BE ¥

2 tokens: EH #HA

0 tokens:

0 tokens:

4 tokens: EZE Ju £ £L

102 tokens: &Ahbd AL RE D<K & BREWL LHLH —Zvy—=v— i W=F FE BFE hHSH ARB &L
36 tokens: E4& E ZE LIESC &KW b #5% 55 LIESK EE &EH Ex thdd EE < 8 #05d £
38 tokens: A& < R% 4 % Res — € RZA5 b D BH 2 EYT LES £S5 ES £ BEIC BHBL
274 tokens: &£54< ALy R BWVWET M5 KE4 ith FE it 45 7= £ FZS BT WS o6 BS

101 tokens: &FZE F AN WE EFE B 485 BE L 2R RS KA EF EAD TUIFEAL Hb x5 KZ

Some preprocessing steps, such as removing stop words and erasing punctuation, return empty
documents. Remove the empty documents using the removeEmptyDocuments function.

documents = removeEmptyDocuments(documents);

Create Preprocessing Function

Creating a function that performs preprocessing can be useful to prepare different collections of text
data in the same way. For example, you can use a function to preprocess new data using the same
steps as the training data.

Create a function which tokenizes and preprocesses the text data to use for analysis. The function
preprocessJapaneseText, performs these steps:

1 Tokenize the text using tokenizedDocument.

2 FErase punctuation using erasePunctuation.

3 Remove a list of stop words (such as "$ZZ", "®1=Y", and "$HH5") using removeStopWords.
4 Lemmatize the words using normalizeWords.

Remove the empty documents after preprocessing using the removeEmptyDocuments function.

Removing documents after using a preprocessing function makes it easier to remove corresponding
data such as labels from other sources.

4-15

4 Language Support

In this example, use the preprocessing function preprocessJapaneseText, listed at the end of the
example, to prepare the text data.

documents

= preprocessJapaneseText(textData);
documents(1:5

)

ans =
5x1 tokenizedDocument:

2 tokens: BFE ¥4
2 tokens: EB #A
0 tokens:

0 tokens:

4

tokens: &ZE JH F1= &L

Remove the empty documents.
documents = removeEmptyDocuments(documents);

Fit Topic Model

Fit a latent Dirichlet allocation (LDA) topic model to the data. An LDA model discovers underlying
topics in a collection of documents and infers word probabilities in topics.

To fit an LDA model to the data, you first must create a bag-of-words model. A bag-of-words model
(also known as a term-frequency counter) records the number of times that words appear in each
document of a collection. Create a bag-of-words model using bagOfWords.

bag = bag0fWords(documents);

Remove the empty documents from the bag-of-words model.
bag = removeEmptyDocuments(bag);

Fit an LDA model with seven topics using fitlda. To suppress the verbose output, set 'Verbose' to
0.

numTopics = 7;
mdl = fitlda(bag,numTopics, 'Verbose',0);

Visualize the first four topics using word clouds.

figure

for i = 1:4
subplot(2,2,1)
wordcloud(mdl,i);
title("Topic " + 1)

end

4-16

Analyze Japanese Text Data

Topic 1

" .
I TE s

e = AR Lo

m _LL--'.:-".'.' 155
ir_l
* B 8

'H,mnj'&ﬁ"’ rh_l'_'ﬁlt
II.1.1 I]E-j [RTRT
s n:ﬁﬁﬁmr T

B #-Pﬂc'*ﬂf‘f”
o 2 F-"'M:I' u

Topic 3

L N e F e
e 1" e A a

il Ej # 113:"

ES

- ra Eﬁl YT

e }*fI/kH:'.%?T

w, w L;I?E{ich‘
ST

u 1 to¢ RB
4 HEr =

i " {E,;. H:llé “}{.f.:j-h’l_

Topic 2

sope WEWT wan

1 “ju' B Ibfﬁljml}..-

= ERE

:ﬁﬁ%&ﬁ@f
: R méﬁ.zé .

DAL

Beh
= B e o
e %é ?‘l ﬁiﬁ.::'{

Topic 4

%i% LT
H:':%EJ Bl

hﬁ‘f‘l\Fﬂ " :L'El L ..J‘:L.-

S é“
ﬁéromL# "

-wm

LE rtﬁ-ara'a"é’:“bﬂ" :
:lﬁ:.‘.:r'li' .

Visualize multiple topic mixtures using stacked bar charts. View five input documents at random and

visualize the corresponding topic mixtures.

numDocuments = numel(documents);
idx = randperm(numDocuments,5);
documents (idx)

ans =
5x1 tokenizedDocument:

4 tokens: #HiE HIE HhHhEHh S(ETFB

7 tokens: #1T 3% WWia E5LTH Bhd <hb HES

13 tokens: %% ZAKQ W& #HF L& & find BED A =Y il &z Y

3 tokens: %4 ¥ T3

23 tokens: I A# EAD LWL #ME BHD <hd BB B B WE d2 B BX5

topicMixtures = transform(mdl,documents(idx));
figure

barh(topicMixtures(1:5,:), 'stacked")

xlim([0 171)

title("Topic Mixtures")

xlabel("Topic Probability")

ylabel("Document")

legend("Topic " + string(l:numTopics), 'Location’

, 'northeastoutside')

oA WA AN ME

4-17

4 Language Support

Topic Mixtures

-Tclpic 1
N Topic 2
[dTopic 3
I Topic 4
T Topic 5
[Topic 6
I Topic 7

Document

0 0.2 0.4 0.6 08 1
Topic Probability

Example Preprocessing Function

The function preprocessJapaneseText, performs these steps:

Tokenize the text using tokenizedDocument.
Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "&ZZ", "$H71=Y", and "$H5") using removeStopwWords.
Lemmatize the words using normalizeWords.

D W N =

function documents = preprocessJapaneseText(textData)

% Tokenize the text.
documents = tokenizedDocument (textData);

% Erase the punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Lemmatize the words.

4-18

Analyze Japanese Text Data

documents = normalizeWords(documents, 'Style', 'lemma');
end

See Also

tokenizedDocument | removeStopWords | stopWords | addPart0fSpeechDetails |
tokenDetails | normalizeWords

More About

. “Language Considerations” on page 4-2

. “Create Simple Text Model for Classification” on page 2-2
. “Analyze Text Data Using Topic Models” on page 2-13

. “Analyze Text Data Using Multiword Phrases” on page 2-7
. “Analyze Text Data Containing Emojis” on page 2-52

. “Train a Sentiment Classifier” on page 2-71

. “Classify Text Data Using Deep Learning” on page 2-90

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)
See Also

4-19

4 Language Support

German Language Support

This topic summarizes the Text Analytics Toolbox features that support German text. For an example
showing how to analyze German text data, see “Analyze German Text Data” on page 4-25.

Tokenization

The tokenizedDocument function automatically detects German input. Alternatively, set the
'Language’ option in tokenizedDocument to 'de’. This option specifies the language details of
the tokens. To view the language details of the tokens, use tokenDetails. These language details
determine the behavior of the removeStopWords, addPart0fSpeechDetails, normalizeWords,
addSentenceDetails, and addEntityDetails functions on the tokens.

Tokenize German Text

Tokenize German text using tokenizedDocument. The function automatically detects German text.

str = [
"Guten Morgen. Wie geht es dir?"
"Heute wird ein guter Tag."];
documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

8 tokens: Guten Morgen . Wie geht es dir ?
6 tokens: Heute wird ein guter Tag .

Sentence Detection

To detect sentence structure in documents, use the addSentenceDetails. You can use the
abbreviations function to help create custom lists of abbreviations to detect.

Add Sentence Details to German Documents

Tokenize German text using tokenizedDocument.

str = [
"Guten Morgen, Dr. Schmidt. Geht es Ihnen wieder besser?"
"Heute wird ein guter Tag."];

documents = tokenizedDocument(str);

Add sentence details to the documents using addSentenceDetails. This function adds the sentence
numbers to the table returned by tokenDetails. View the updated token details of the first few
tokens.

documents = addSentenceDetails(documents);
tdetails = tokenDetails(documents);
head(tdetails, 10)

Token DocumentNumber SentenceNumber LineNumber Type Language

4-20

German Language Support

"Guten"
"Morgen"
IIDrII
"Schmidt"
"Geht"
Ilesll
"Thnen"

L T I = N S Ry Sy S SR
NNNRRRRFRRR R

Table of German Abbreviations

HF R HRERPRRBR R

letters
letters
punctuation
letters
punctuation
letters
punctuation
letters
letters
letters

de
de
de
de
de
de
de
de
de
de

View a table of German abbreviations. Use this table to help create custom tables of abbreviations for

sentence detection when using addSentenceDetails.

tbl = abbreviations('Language', 'de');
head (tbl)

Abbreviation Usage
"A.T" regular
"ABLl" regular
"Abb" regular
"Abdr" regular
"Abf" regular
"Abf1" regular
"Abh" regular
"Abk" regular

Part of Speech Details

To add German part of speech details to documents, use the addPart0fSpeechDetails function.

Get Part of Speech Details of German Text

Tokenize German text using tokenizedDocument.

str = [
"Guten Morgen. Wie geht es dir?"
"Heute wird ein guter Tag."];
documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

8 tokens: Guten Morgen . Wie geht es dir ?

6 tokens: Heute wird ein guter Tag

To get the part of speech details for German text, first use addPart0fSpeechDetails.

4-21

4 Language Support

4-22

documents = addPartOfSpeechDetails(documents);

To view the part of speech details, use the tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)
Token DocumentNumber SentenceNumber LineNumber Type Language
"Guten" 1 1 1 letters de
"Morgen" 1 1 1 letters de
o 1 1 1 punctuation de
"Wie" 1 2 1 letters de
"geht" 1 2 1 letters de
"es" 1 2 1 letters de
“dir" 1 2 1 letters de
e 1 2 1 punctuation de

Named Entity Recognition
To add entity tags to documents, use the addEntityDetails function.

Add Named Entity Tags to German Text

Tokenize German text using tokenizedDocument.

str = [
"Ernst zog von Frankfurt nach Berlin."
"Besuchen Sie Volkswagen in Wolfsburg."];
documents = tokenizedDocument(str);

To add entity tags to German text, use the addEntityDetails function. This function detects person

names, locations, organizations, and other named entities.
documents = addEntityDetails(documents);
To view the entity details, use the tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)

Token DocumentNumber SentenceNumber LineNumber Type Language
"Ernst" 1 1 1 letters de
"zog" 1 1 1 letters de
"von" 1 1 1 letters de
"Frankfurt" 1 1 1 letters de
"nach" 1 1 1 letters de
"Berlin" 1 1 1 letters de
o 1 1 1 punctuation de
"Besuchen" 2 1 1 letters de

View the words tagged with entity "person", "location", "organization", or "other". These

words are the words not tagged with "non-entity".

Par

adje
nout
pun
adve
verl
prot
prot
pun

German Language Support

idx = tdetails.Entity ~= "non-entity";
tdetails(idx, :)

ans=5x8 table

Token DocumentNumber SentenceNumber LineNumber Type Language
"Ernst" 1 1 1 letters de
"Frankfurt" 1 1 1 letters de
"Berlin" 1 1 1 letters de
"Volkswagen" 2 1 1 letters de
"Wolfsburg" 2 1 1 letters de

Stop Words

To remove stop words from documents according to the token language details, use
removeStopWords. For a list of German stop words set the ' Language' option in stopWords to
'de’.

Remove German Stop Words from Documents

Tokenize German text using tokenizedDocument. The function automatically detects German text.
str = [
"Guten Morgen. Wie geht es dir?"

"Heute wird ein guter Tag."l;
documents = tokenizedDocument(str)

documents =
2x1 tokenizedDocument:

8 tokens: Guten Morgen . Wie geht es dir ?

6 tokens: Heute wird ein guter Tag

Remove stop words using the removeStopWords function. The function uses the language details
from documents to determine which language stop words to remove.

documents = removeStopWords(documents)

documents =
2x1 tokenizedDocument:

5 tokens: Guten Morgen . geht ?
5 tokens: Heute wird guter Tag .

Stemming
To stem tokens according to the token language details, use normalizeWords.

Stem German Text

4-23

Par

proj
proj
proj
Nnoul
proj

4 Language Support

4-24

Tokenize German text using the tokenizedDocument function. The function automatically detects
German text.

str = [
"Guten Morgen. Wie geht es dir?"
"Heute wird ein guter Tag."l;
documents = tokenizedDocument(str);

Stem the tokens using normalizeWords.
documents = normalizeWords(documents)

documents =
2x1 tokenizedDocument:

8 tokens: gut morg . wie geht es dir ?
6 tokens: heut wird ein gut tag .

Language-Independent Features
Word and N-Gram Counting

The bag0fWords and bag0fNgrams functions support tokenizedDocument input regardless of
language. If you have a tokenizedDocument array containing your data, then you can use these
functions.

Modeling and Prediction

The fitlda and fitlsa functions support bag0fWords and bagOfNgrams input regardless of
language. If you have a bag0OfWords or bagOfNgrams object containing your data, then you can use
these functions.

The trainWordEmbedding function supports tokenizedDocument or file input regardless of
language. If you have a tokenizedDocument array or a file containing your data in the correct
format, then you can use this function.

See Also

tokenizedDocument | removeStopWords | stopWords | addPart0fSpeechDetails |
tokenDetails | normalizeWords | addLanguageDetails

More About

. “Language Considerations” on page 4-2
. “Analyze German Text Data” on page 4-25

Analyze German Text Data

Analyze German Text Data

This example shows how to import, prepare, and analyze German text data using a topic model.

German text data can be large and can contain lots of noise that negatively affects statistical analysis.
For example, the text data can contain the following:

Variations in word forms. For example, ,rot”, ,rote”, and ,roten”.

Words that add noise. For example, stop words such as ,der”, ,die”, and ,das”.
* Punctuation and special characters.

These word clouds illustrate word frequency analysis applied to some raw text data and a
preprocessed version of the same text data.

Raw Data Cleaned Data
n.IE_hr =:.-. o)
13000 des B dD*h negehaft
als werden I' IH: e
dem fur *m O an BT
auch N oder : hl:L"lE jahr
o mit dle man gibt " z5 - strass
o u n d ('sich 3 erd Stadl
i |ml ZUu Dﬂr bad ngDSbDI’g
an [] "u"'C'Fn hat dlnnergtadt kind
iiom m goaesoerg
jir EIHE der a.':sf et 'b__IdSO“tgm _
wird den st es = “Viel schon
. Die nicht sind _bmﬂ
Godesberg
inan @SS w

= durch

This example first shows how to import and prepare German text data, and then it shows how to
analyze the text data using a Latent Dirichlet Allocation (LDA) model. An LDA model is a topic model
that discovers underlying topics in a collection of documents and infers the word probabilities in
topics. Use these steps in preparing the text data and fitting the model:

* Import the text data from a CSV file and extract the relevant data.

Prepare the text data for analysis using standard preprocessing techniques.
+ Fit a topic model and visualize the results.

4-25

4 Language Support

4-26

Import Data

Download the data vorhaben. csv from https://opendata.bonn.de/dataset/vorhabenliste-b
%C3%BCrgerbeteiligungen-planungen-und-projekte. This file can change over time, so the results in
the example can vary.

Use detectImportOptions to determine the format of the CSV file and set the text type to string.
Set the 'Encoding' option to 'IS0-8859-15". Read the data using the readtable function and
view the first few rows.

filename = "vorhaben.csv";

options = detectImportOptions(filename, 'TextType', 'string', 'Encoding', 'IS0-8859-15");
data = readtable(filename,options);

head(data)

ans=8x19 table
Titel

"Bauleitplanverfahren zur Aufstellung des vorhabenbezogenen<Bebauungsplans Nr. 6620-1 ?Bunde
"Bauleitplanverfahren zur Aufstellung des vorhabenbezogenen<Bebauungsplans Nr. 6522-1 "Didin
"Bauleitplanverfahren zur Aufstellung des Bebauungsplans«Nr. 7621-56 ?SebastianstraBe?«"
"EPICURO - European Partnership for Innovative Cities within and Urban Resilience Outlook"
"Bauleitplanverfahren zur Aufstellung des Bebauungsplanes Nr. 6719-3 "Schwimmbad Wasserland"
"Blrgerbeteiligung an der Konzepterstellung fir den Neubau eines Schwimmbades in Bonn-Dotten
"Integriertes Handlungskonzept Grine Infrastruktur (InHK GI) zurezukinftigen Freiraumsicherul

"Verlangerung des Teufelsbachweges bis zur L 83n"

Extract the text data from the variable InhaltlicheBeschreibungUndzZielsetzung (the
description of the content and the goal).

textData = data.InhaltlicheBeschreibungUndZielsetzung;
Visualize the text data in a word cloud.

figure
wordcloud(textData);

https://opendata.bonn.de/dataset/vorhabenliste-b%C3%BCrgerbeteiligungen-planungen-und-projekte
https://opendata.bonn.de/dataset/vorhabenliste-b%C3%BCrgerbeteiligungen-planungen-und-projekte

Analyze German Text Data

vorhanden

abends
ohne

sicher
machen Teil

imﬁ?]dgill. dort > B kleme |bt Ort

Theaterplatz
dazu dafir Mutzu
weniger moglich Angebot
leider bassel gondern stark Fulgangerzone
Park "renge

arabischen sehr Jahrenfark =

weitere 'y)
wurde” gyape.s

Menschen NEUe

Saa cift arirk O” the rolse
Burger piar WIrd ‘sollte ki

Godes

SCh 0 n Bereich

fahren

Zigl

surilestenn ad

junge

machy Radiahrer

SD‘WiE marered

. Platz
attraktiver e Zeit GESGhEﬁE

ﬁflfa;;iliggr? Bpnn : Stadt seit
Parkplitze wiinsche gut Vlele Ware Schulen g

Raum
unsere Bahnhof

erhalten |NNENstadt Haus

ZNSChen Sigdinalle Lannasdad
genutzt Fulgimger Orisle ME‘h |E'm

insbasonderne

Tokenize Text Data

Create an array of tokenized documents using the tokenizedDocument function.

documents = tokenizedDocument (textData);

documents(1:10)

ans =

10x1 tokenizedDocument:

50
46
41
134
24
80
60
51
29
37

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

Fir das Gebiet zwischen Reuterstrafe , Bundeskanzlerplatz , Willy-Brandt-Allee ,
Fir den vorhabenbezogenen Bebauungsplan Nr . 6522-1 ? Didinkirica ? der Bundesst
Fir das Gebiet zwischen Alfred-Bucherer-Strale , Sebastianstrafe und dem FuBweg -
In den vergangenen Jahren fihrte der Klimawandel zu einer Vielzahl von Folgen fi
Schaffung von Planungsrecht fir den Bau eines neuen Familien - , Schul - und Spo
Fir die begleitende Biirgerbeteiligung bei der Konzepterstellung fir das neue Sch
In der Gebietskulisse des Grunen C sollen die Freirdume auch zukinftig im Sinne
Zur Entlastung von Putzchen / Bechlinghoven vor Durchgangsverkehr und in Verbindi
Fir das Areal der ehemaligen Landwirtschaftskammer sowie einer angrenzenden stad
Fir das Areal Herbert-Rabius-StraBe im Stadtbezirk Beuel , Ortsteil Beuel-Mitte

Get Part-of-Speech Tags

Add the part of speech details using the addPart0fSpeechDetails function.

documents = addPartOfSpeechDetails(documents);

Get the token details and then view the details of the first few tokens.

4-27

4 Language Support

4-28

tdetails = tokenDetails(documents);

head(tdetails)

ans=8x7 table

Token DocumentNumber

"Fur"

"das"

"Gebiet"
"zwischen"
"Reuterstralle"

"Bundeskanzlerplatz"

[R i S T T

SentenceNumber

e e e e e e

LineNumber

e el

Type

letters
letters
letters
letters
letters
punctuation
letters
punctuation

The Part0fSpeech variable in the table contains the part-of-speech tags of the tokens. Create word

clouds of all the nouns and adjectives, respectively.

figure

idx = tdetails.PartO0fSpeech ==
tokens = tdetails.Token(idx);
subplot(1,2,1)
wordcloud(tokens);
title("Nouns")

idx = tdetails.PartO0fSpeech ==
tokens = tdetails.Token(idx);
subplot(1,2,2)
wordcloud(tokens);
title("Adjectives")

||noun|| ;

"adjective";

Analyze German Text Data

Neuns

s b o
o Stuthalk:

Sraonal
e i =:A.r'

. BUTGEY ..
H.Il'll:\.'llll'.rl Eergelil wrirss Fraven

wee. Menschen
.2 Strale s
i Stadt Schulon
God esbérger

Bonner z:i Park e Wetruren
Kinder Bad Ptz

T Jahren

' Innenstadtx-w-u
wio Geschafte
_ Fulgdngerzone
Gabauda =~
ek chbctt
Rafahrer

Prepare Text Data for Analysis

Adjectives

[reprrpes a1

geplantan

S e h che DEUtSEhEl'I
mademearae dlkn

o Lnserer
attraktiven =, sfirschen
'\f."‘:LIl\'.‘dLILI ngIICh o '_ '_

hohen ... letzten

manmedan

kleme gute =
arablschen .

* oﬁentllchergm;c-::
mieNeUe

[=

nge Oro 3e socn

auslandg szhan
s s

bessere SCh D n SH:I'IEF

elgenean - qg QANZE
,m:crgrr Elﬂ rggalmélrsig
vorhandenen
- gesamten =
" ehemaligen
stidtischen

anlsprachandan
Lpeg=prd= =

Tokenize the text using tokenizedDocument and view the first few documents.

documentsRaw = tokenizedDocument (textData);

documents = documentsRaw;
documents(1:10)

ans =
10x1 tokenizedDocument:

50
46
41
134
24
80
60
51
29
37

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

Fir das Gebiet zwischen ReuterstraBe , Bundeskanzlerplatz , Willy-Brandt-Allee ,
Fir den vorhabenbezogenen Bebauungsplan Nr . 6522-1 ? Didinkirica ? der Bundesst
Fir das Gebiet zwischen Alfred-Bucherer-Stralle , SebastianstraBe und dem FuBweg :
In den vergangenen Jahren fihrte der Klimawandel zu einer Vielzahl von Folgen fu
Schaffung von Planungsrecht fir den Bau eines neuen Familien - , Schul - und Spo
Fir die begleitende Bilirgerbeteiligung bei der Konzepterstellung fir das neue Sch
In der Gebietskulisse des Grinen C sollen die Freiraume auch zukinftig im Sinne
Zur Entlastung von Putzchen / Bechlinghoven vor Durchgangsverkehr und in Verbindi
Fir das Areal der ehemaligen Landwirtschaftskammer sowie einer angrenzenden stad
Fir das Areal Herbert-Rabius-Strafe im Stadtbezirk Beuel , Ortsteil Beuel-Mitte

Replace common phrases (n-grams) with a single token and remove the stop words.

old
new

["Bad" "Godesberg"];
"Bad Godesberg";

documents = replaceNgrams(documents,old,new);

4-29

4 Language Support

4-30

documents = removeStopWords(documents);
documents(1:10)

ans =
10x1 tokenizedDocument:

35 tokens: Gebiet zwischen ReuterstraBe , Bundeskanzlerplatz , Willy-Brandt-Allee , Eduard-P
33 tokens: vorhabenbezogenen Bebauungsplan Nr . 6522-1 ? Didinkirica ? Bundesstadt Bonn , St
27 tokens: Gebiet zwischen Alfred-Bucherer-Strae , Sebastianstrafe FuBweg zwischen Rockumst
81 tokens: vergangenen Jahren flihrte Klimawandel Vielzahl Folgen Umwelt , Wirtschaft Mensche
15 tokens: Schaffung Planungsrecht Bau neuen Familien - , Schul - Sportschwimmbades Flachen |
57 tokens: begleitende Birgerbeteiligung Konzepterstellung neue Schwimmbad soll folgenden The
40 tokens: Gebietskulisse Grinen C sollen Freirdaume zukinftig Sinne Naherholung , Landwirtscl
32 tokens: Entlastung Putzchen / Bechlinghoven Durchgangsverkehr Verbindung geplanten Anschli
19 tokens: Areal ehemaligen Landwirtschaftskammer sowie angrenzenden stadtischen Flache Stad
25 tokens: Areal Herbert-Rabius-StraBe Stadtbezirk Beuel , Ortsteil Beuel-Mitte soll vorhabe

Normalize the text using the normalizeWords function.

documents = normalizeWords(documents);
documents(1:10)

ans =
10x1 tokenizedDocument:

35 tokens: gebiet zwisch reuterstrass , bundeskanzlerplatz , willy-brandt-alle , eduard-pflu
33 tokens: vorhabenbezog bebauungsplan nr . 6522-1 ? didinkirica ? bundesstadt bonn , stadtbe
27 tokens: gebiet zwisch alfred-bucherer-strass , sebastianstrass fussweg zwisch rockumstras:
81 tokens: vergang jahr fuhrt klimawandel vielzahl folg umwelt , wirtschaft mensch . stadt g«
15 tokens: schaffung planungsrecht bau neu famili - , schul - sportschwimmbad flach nordlich
57 tokens: begleit burgerbeteil konzepterstell neu schwimmbad soll folgend them beteil geb :
40 tokens: gebietskuliss grun c soll freiraum zukunft sinn naherhol , landwirtschaft naturscl
32 tokens: entlast putzch / bechlinghov durchgangsverkehr verbind geplant anschlussstell maa
19 tokens: areal ehemal landwirtschaftskamm sowi angrenz stadtisch flach stadtbezirk beuel ,
25 tokens: areal herbert-rabius-strass stadtbezirk beuel , ortsteil beuel-mitt soll vorhabenl

Erase the punctuation using the erasePunctuation function.

documents = erasePunctuation(documents);
documents(1:10)

ans =
10x1 tokenizedDocument:

27 tokens: gebiet zwisch reuterstrass bundeskanzlerplatz willybrandtalle eduardpflugerstrass
25 tokens: vorhabenbezog bebauungsplan nr 65221 didinkirica bundesstadt bonn stadtbezirk boni
22 tokens: gebiet zwisch alfredbuchererstrass sebastianstrass fussweg zwisch rockumstrass en
64 tokens: vergang jahr fuhrt klimawandel vielzahl folg umwelt wirtschaft mensch stadt gemeil
11 tokens: schaffung planungsrecht bau neu famili schul sportschwimmbad flach nordlich heizk
41 tokens: begleit burgerbeteil konzepterstell neu schwimmbad soll folgend them beteil geb d.
31 tokens: gebietskuliss grun c soll freiraum zukunft sinn naherhol landwirtschaft naturschu
27 tokens: entlast putzch bechlinghov durchgangsverkehr verbind geplant anschlussstell maars
18 tokens: areal ehemal landwirtschaftskamm sowi angrenz stadtisch flach stadtbezirk beuel o
19 tokens: areal herbertrabiusstrass stadtbezirk beuel ortsteil beuelmitt soll vorhabenbezog

Visualize the raw and cleaned data in word clouds.

Analyze German Text Data

figure

subplot(1,2,1)
wordcloud(documentsRaw) ;
title("Raw Data")

subplot(1,2,2)
wordcloud(documents);
title("Cleaned Data")

Raw Data Cleaned Data
mehr* e
< desBad ot
- als werdeﬁ :_: ;iq ,:u-h
v dem fl.lr 5 " m "UF‘;IIEI'" " sehr
auch N oder Fat WU"F'C‘! jahr
e mit d | e r‘n_an gibt ;25 - strass
-.\:". und 5|(;I'I'|I” w" erd Stadl
ict
‘a'r;“. ZU b bad godcsbcrg
| " won' ™ gtesherg”
| Elne der an et badso”tgul .
“wird den ISt Esa_._s “viel schon
Die nicht sind - bg@ﬂ
GDdesberg
ginen 0ASS «
:', y o8 durch

Create Preprocessing Function

Creating a function that performs preprocessing can be useful to prepare different collections of text
data in the same way. For example, you can use a function to preprocess new data using the same
steps as the training data.

Create a function which tokenizes and preprocesses the text data to use for analysis. The function
preprocessGermanText, listed at the end of the example, performs these steps:

1

gua A W N

Tokenize the text using tokenizedDocument.

Replace the multiword phrase ["Bad" "Godesberg"] with "Bad Godesberg".
Remove a list of stop words (such as ,der”, ,die”, and ,das”) using removeStopWords.
Normalize the words using normalizeWords.

Erase punctuation using erasePunctuation.

4-31

4 Language Support

4-32

Remove the empty documents after preprocessing using the removeEmptyDocuments function.
Removing documents after using a preprocessing function makes it easier to remove corresponding
data such as labels from other sources.

In this example, use the preprocessing function preprocessGermanText, listed at the end of the
example, to prepare the text data.

documents = p
documents(1:5

ans =

reprocessGermanText (textData);
)

5x1 tokenizedDocument:

27 tokens:
25 tokens:
22 tokens:
64 tokens:
11 tokens:

gebiet zwisch reuterstrass bundeskanzlerplatz willybrandtalle eduardpflugerstrass
vorhabenbezog bebauungsplan nr 65221 didinkirica bundesstadt bonn stadtbezirk boni
gebiet zwisch alfredbuchererstrass sebastianstrass fussweg zwisch rockumstrass en
vergang jahr fuhrt klimawandel vielzahl folg umwelt wirtschaft mensch stadt gemeil
schaffung planungsrecht bau neu famili schul sportschwimmbad flach nordlich heizk

Remove the empty documents using the removeEmptyDocuments function.
documents = removeEmptyDocuments(documents);

Fit Topic Model

Fit a latent Dirichlet allocation (LDA) topic model to the data. An LDA model discovers underlying
topics in a collection of documents and infers word probabilities in topics.

To fit an LDA model to the data, you first must create a bag-of-words model. A bag-of-words model
(also known as a term-frequency counter) records the number of times that words appear in each
document of a collection. Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents);
Remove the empty documents from the bag-of-words model.

bag = removeEmptyDocuments(bag);

Fit an LDA model with seven topics using fitlda. To suppress the verbose output, set 'Verbose' to

0.

numTopics = 7;
mdl = fitlda(bag,numTopics, 'Verbose',0);

Visualize the first four topics using word clouds.

figure

for i = 1:4
subplot(2,2,1)
wordcloud(mdl,i);
title("Topic " + i)

end

Analyze German Text Data

Topic 1 Topic 2
T “g- e s m@,:‘m;“?

Ssaard fussganyg . radweg . *:-'.ud'-'. wenig - angabotl
i | SOt P, 2 e g innenstadt {E"'-
mahlem |Eld II"Id u:éﬂﬁ?“"" witn SChDrI hier zb ab
fizhl - g st il .
w = wUrd oL 5 godesberg: «

as iocs park ainig 7 gu Warviel mensch,
,...’ spepa dOTE m;‘;“:‘:’,.., e ubad godesberg
vt yieeient MEENE nahh 1Ja~sga"ge rzon - geschaft <
. [— . pract QLA rrmed i ot
Topic 3 Topic 4
Murfurslenbad 57 it mwkpy PeaCs
ity L g,
'.r-lril '; 1 n:H:lg“Ch ﬂﬂem‘hglrt WI-ld.IIIIT :"1; “T:'I_;I:ﬁt-r ':Iil':d". R
o T m # arhal . = ortstell - wew EE
gndeslberg bt ™ == bewam DU a2 vompt oo
b d o ﬂ” iy b , e Gt B2 0 g
i Eﬂ D es erg ik kb }ahrlw‘"r ur‘ISIHull
parkp t bad b”e]Ehlnwllll farpzark bil:ﬂ' bDnn mhnung —
';Te"“ mal - stadt 20 M ch i eea zwisch BE L
msbcmndbidrk o "-‘"‘-"""d' '\LgL ass

anpd
e
L r| wk

Visualize multiple topic mixtures using stacked bar charts. View five input documents at random and
visualize the corresponding topic mixtures.

numDocuments = numel(documents);
idx = randperm(numDocuments,5);
documents (idx)

ans =
5x1 tokenizedDocument:

4 tokens: gastronom angebot sollt verbessert

82 tokens: grunflach dietrichglaunerstrass rand dorfplatz entlang fussweg mehlem bach entlal
116 tokens: sportplatz plittersdorf kommt leid regelmass unschon vorfall einsehbar umfeld he
64 tokens: mainz strass bereich geschaft kirch uberwieg beidseit zugeparkt unschon sond fus:
50 tokens: "1" "bezirksverodnet" "sollt" "kulturburgermeist" "gewahlt" "hatt" "aufgab" "ver

topicMixtures = transform(mdl,documents(idx));

figure

barh(topicMixtures(1:5,:), 'stacked")

xlim([0 1])

title("Topic Mixtures")

xlabel("Topic Probability")

ylabel("Document")

legend("Topic " + string(l:numTopics), 'Location', 'northeastoutside’)

4-33

4 Language Support

4-34

Topic Mixtures

-Tclpic 1
N Topic 2
[dTopic 3
I Topic 4
T Topic 5
[Topic 6
I Topic 7

Document

0 0.2 0.4 0.6 08 1
Topic Probability

Example Preprocessing Function
The function preprocessGermanText, performs these steps:

Tokenize the text using tokenizedDocument.

Replace the multiword phrase ["Bad" "Godesberg"] with "Bad Godesberg".
Remove a list of stop words (such as ,der”, ,die”, and ,das”) using removeStopWords.
Normalize the words using normalizeWords.

Erase punctuation using erasePunctuation.

gaua A W N =

function documents = preprocessGermanText (textData)

% Tokenize the text.
documents = tokenizedDocument (textData);

% Replace multiword phrases

old = ["Bad" "Godesberg"];

new = "Bad Godesberg";

documents = replaceNgrams(documents,old,new);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Normalize the words.
documents = normalizeWords(documents);

Analyze German Text Data

% Erase the punctuation.
documents = erasePunctuation(documents);

end

See Also

tokenizedDocument | removeStopWords | stopWords | addPart0fSpeechDetails |
tokenDetails | normalizeWords

More About

“Language Considerations” on page 4-2

“Create Simple Text Model for Classification” on page 2-2
“Analyze Text Data Using Topic Models” on page 2-13

“Analyze Text Data Using Multiword Phrases” on page 2-7
“Analyze Text Data Containing Emojis” on page 2-52

“Train a Sentiment Classifier” on page 2-71

“Classify Text Data Using Deep Learning” on page 2-90
“Generate Text Using Deep Learning” (Deep Learning Toolbox)

4-35

4 Language Support

Korean Language Support

4-36

This topic summarizes the Text Analytics Toolbox features that support Korean text.

Tokenization

The tokenizedDocument function automatically detects Korean input. Alternatively, set the
"Language’ option in tokenizedDocument to 'ko'. This option specifies the language details of
the tokens. To view the language details of the tokens, use tokenDetails. These language details
determine the behavior of the removeStopWords, addPart0fSpeechDetails, normalizeWords,
addSentenceDetails, and addEntityDetails functions on the tokens.

To specify additional MeCab options for tokenization, create a mecabOptions object. To tokenize

using the specified MeCab tokenization options, use the 'TokenizeMethod' option of
tokenizedDocument.

Part of Speech Details

The tokenDetails function, by default, includes part of speech details with the token details.

Named Entity Recognition

The tokenDetails function, by default, includes entity details with the token details.

Stop Words

To remove stop words from documents according to the token language details, use
removeStopWords. For a list of Korean stop words set the 'Language' option in stopWords to
'ko'.

Lemmatization

To lemmatize tokens according to the token language details, use normalizeWords and set the
'Style' optionto 'lemma’.

Language-Independent Features

Word and N-Gram Counting

The bag0OfWords and bag0fNgrams functions support tokenizedDocument input regardless of
language. If you have a tokenizedDocument array containing your data, then you can use these
functions.

Modeling and Prediction

The fitlda and fitlsa functions support bagOfWords and bagO0fNgrams input regardless of

language. If you have a bagOfWords or bagOfNgrams object containing your data, then you can use
these functions.

Korean Language Support

The trainWordEmbedding function supports tokenizedDocument or file input regardless of

language. If you have a tokenizedDocument array or a file containing your data in the correct
format, then you can use this function.

See Also

tokenizedDocument | removeStopWords | stopWords | addPart0fSpeechDetails |
tokenDetails | normalizeWords | addLanguageDetails | addEntityDetails

More About

. “Language Considerations” on page 4-2

4-37

4 Language Support

Language-Independent Features

4-38

Word and N-Gram Counting

The bag0fWords and bag0fNgrams functions support tokenizedDocument input regardless of
language. If you have a tokenizedDocument array containing your data, then you can use these
functions.

Modeling and Prediction

The fitlda and fitlsa functions support bag0fWords and bagOfNgrams input regardless of
language. If you have a bag0OfWords or bagOfNgrams object containing your data, then you can use
these functions.

The trainWordEmbedding function supports tokenizedDocument or file input regardless of
language. If you have a tokenizedDocument array or a file containing your data in the correct
format, then you can use this function.

See Also

stopWords | removeWords | normalizeWords | bag0fWords | bagOfNgrams |
tokenizedDocument | fitlda | fitlsa | wordcloud | addSentenceDetails |
addLanguageDetails

More About

. “Text Data Preparation”

. “Modeling and Prediction”

. “Display and Presentation”

. “Japanese Language Support” on page 4-6
. “Analyze Japanese Text Data” on page 4-10
. “German Language Support” on page 4-20
. “Analyze German Text Data” on page 4-25

Glossary

5 Glossary

Text Analytics Glossary

5-2

This section provides a list of terms used in text analytics.

Documents and Tokens

Term Definition More Information
Bigram Two tokens in succession. For [bag0fNgrams
example, ["New" "York"].
Complex token A token with complex structure. |tokenDetails
For example, an email address
or a hash tag.
Context Tokens or characters that context
surround a given token.
Corpus A collection of documents. tokenizedDocument
Document A single observation of text tokenizedDocument
data. For example, a report, a
tweet, or an article.
Grapheme A human readable character. A |splitGraphemes
grapheme can consist of
multiple Unicode code points.
For example, "a", "(f] or "&&".
N-gram N tokens in succession. bagOfNgrams

Part of speech

Categories of words used in
grammatical structure. For
example, "noun", "verb", and

"adjective".

addPartOfSpeechDetails

Token

A string of characters
representing a unit of text data,
also known as a "unigram". For
example, a word, number, or
email address.

tokenizedDocument

Token details

Information about the token.
For example, type, language, or
part-of-speech details.

tokenDetails

Token types

The category of the token. For
example, "letters",
"punctuation"”, or "email
address".

tokenDetails

Tokenized document

A document split into tokens.

tokenizedDocument

Trigram

Three tokens in succession. For
example, ["The" "United"
"States"]

bag0fNgrams

Vocabulary

Unique words or tokens in a
corpus or model.

tokenizedDocument

Text Analytics Glossary

Preprocessing

Term

Definition

More Information

Normalize

Reduce words to a root form.
For example, reduce the word
"walking" to "walk" using
stemming or lemmatization.

normalizeWords

Lemmatize

Reduce words to a dictionary
word (the lemma form). For
example, reduce the words
"running" and "ran" to "run".

normalizeWords

Stem

Reduce words by removing
inflections. The reduced word is
not necessarily a real word. For
example, the Porter stemmer
reduces the words "happy" and
"happiest" to "happi".

normalizeWords

Stop words

Words commonly removed
before analysis. For example
"and", HOf", and “the".

removeStopWords

Modeling and Prediction

Bag-of-Words

Term

Definition

More Information

Bag-of-n-grams model

A model that records the
number of times that n-grams
appear in each document of a
Corpus.

bag0fNgrams

Bag-of-words model

A model that records the
number of times that words
appear in each document of a
collection.

bagO0fWords

Term frequency count matrix

A matrix of the frequency
counts of words occurring in a
collection of documents
corresponding to a given
vocabulary. This matrix is the
underlying data of a bag-of-
words model.

bagO0fWords

Term Frequency-Inverse
Document Frequency (tf-idf)
matrix

A statistical measure based on
the word frequency counts in
documents and the proportion
of documents containing the
words in the corpus.

tfidf

5-3

5 Glossary

Latent Dirichlet Allocation

Term

Definition

More Information

Corpus topic probabilities

The probabilities of observing
each topic in the corpus used to
fit the LDA model.

ldaModel

Document topic probabilities

The probabilities of observing
each topic in each document
used to fit the LDA model.
Equivalently, the topic mixtures
of the training documents.

ldaModel

Latent Dirichlet allocation (LDA)

A generative statistical topic
model that infers topic
probabilities in documents and
word probabilities in topics.

fitlda

Perplexity

A statistical measure of how
well a model describes the given
data. A lower perplexity
indicates a better fit.

logp

Topic

A distribution of words,
characterized by the "topic word
probabilities".

ldaModel

Topic concentration

The concentration parameter of
the underlying Dirichlet
distribution of the corpus topics
mixtures.

ldaModel

Topic mixture

The probabilities of topics in a
given document.

transform

Topic word probabilities

The probabilities of words in a
given topic.

ldaMode'l

Word concentration

The concentration parameter of
the underlying Dirichlet
distribution of the topics.

ldaModel

Latent Semantic Analysis

Term Definition More Information
Component weights The singular values of the lsaModel
decomposition, squared.
Document scores The score vectors in lower transform
dimensional space of the
documents used to fit the LSA
model.
Latent semantic analysis (LSA) |A dimension reducing technique |fitlsa

based on principal component
analysis (PCA).

Text Analytics Glossary

Term

Definition

More Information

Word scores

The scores of each word in each
component of the LSA model.

1saModel

Word Embeddings

Term

Definition

More Information

Word embedding

A model, popularized by the
word2vec, GloVe, and fastText
libraries, that maps words in a
vocabulary to real vectors.

wordEmbedding

Word embedding layer

A deep learning network layer
that learns a word embedding
during training.

wordEmbeddinglLayer

Word encoding

A model that maps words to
numeric indices.

wordEncoding

Visualization

Term

Definition

More Information

Text scatter plot

A scatter plot with words
plotted at specified coordinates
instead of markers.

textscatter

Word cloud A chart that displays words with (wordcloud
sizes corresponding to numeric
data, usually frequency counts.

See Also

tokenizedDocument | tokenDetails | addPartOfSpeechDetails | removeStopWords |

normalizeWords | bag0fWords | fitlda | wordEmbedding | wordEncoding |
wordEmbeddinglLayer | bagOfNgrams | wordcloud | textscatter

More About

. “Try Text Analytics in 10 Lines of Code”

. “Import Text Data into MATLAB”

. “Create Simple Preprocessing Function”

. “Get Started with Topic Modeling”

. “Visualize Text Data Using Word Clouds” on page 3-2

3-5

	Text Data Preparation
	Extract Text Data from Files
	Prepare Text Data for Analysis
	Parse HTML and Extract Text Content
	Correct Spelling in Documents
	Create Extension Dictionary for Spelling Correction
	Create Custom Spelling Correction Function Using Edit Distance Searchers
	Analyze Sentence Structure Using Grammatical Dependency Parsing
	Data Sets for Text Analytics

	Modeling and Prediction
	Create Simple Text Model for Classification
	Analyze Text Data Using Multiword Phrases
	Analyze Text Data Using Topic Models
	Choose Number of Topics for LDA Model
	Compare LDA Solvers
	Visualize LDA Topics Using Word Clouds
	Visualize LDA Topic Probabilities of Documents
	Visualize Document Clusters Using LDA Model
	Visualize LDA Topic Correlations
	Visualize Correlations Between LDA Topics and Document Labels
	Create Co-occurrence Network
	Analyze Text Data Containing Emojis
	Analyze Sentiment in Text
	Generate Domain Specific Sentiment Lexicon
	Train a Sentiment Classifier
	Extract Keywords from Text Data Using RAKE
	Extract Keywords from Text Data Using TextRank
	Classify Documents Using Document Embeddings
	Classify Text Data Using Deep Learning
	Classify Text Data Using Convolutional Neural Network
	Classify Text Data Using Custom Training Loop
	Multilabel Text Classification Using Deep Learning
	Sequence-to-Sequence Translation Using Attention
	Language Translation Using Deep Learning
	Classify Out-of-Memory Text Data Using Deep Learning
	Pride and Prejudice and MATLAB
	Word-By-Word Text Generation Using Deep Learning
	Generate Text Using Autoencoders
	Define Text Encoder Model Function
	Define Text Decoder Model Function
	Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore

	Display and Presentation
	Visualize Text Data Using Word Clouds
	Visualize Word Embeddings Using Text Scatter Plots

	Language Support
	Language Considerations
	Language-Independent Features

	Japanese Language Support
	Tokenization
	Part of Speech Details
	Named Entity Recognition
	Stop Words
	Lemmatization
	Language-Independent Features

	Analyze Japanese Text Data
	German Language Support
	Tokenization
	Sentence Detection
	Part of Speech Details
	Named Entity Recognition
	Stop Words
	Stemming
	Language-Independent Features

	Analyze German Text Data
	Korean Language Support
	Tokenization
	Part of Speech Details
	Named Entity Recognition
	Stop Words
	Lemmatization
	Language-Independent Features

	Language-Independent Features
	Word and N-Gram Counting
	Modeling and Prediction

	Glossary
	Text Analytics Glossary
	Documents and Tokens
	Preprocessing
	Modeling and Prediction
	Visualization

